谢亚君1, 马昌凤2
谢亚君, 马昌凤. 求解Einstein-积张量方程的混合贪婪随机坐标下降法[J]. 数值计算与计算机应用, 2021, 42(4): 323-336.
Xie Yajun, Ma Changfeng. HYBRID GREEDY RANDOMIZED COORDINATE DESCENT METHOD FOR SOLVING TENSOR EQUATION ACCOMPANIED BY EINSTEIN PRODUCT[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(4): 323-336.
Xie Yajun1, Ma Changfeng2
MR(2010)主题分类:
分享此文:
[1] Bader B, Kolda T. MATLAB Tensor Toolbox Version 2.5. 2012. http://www.sandia.gov/tgkolda/TensorToolbox/. [2] Bai X, Huang Z, Wang Y. Global uniqueness and solvability for tensor complementarity problems[J]. J. Optim. Theory Appl., 2016, 170(1):72-84. [3] Bai Z, Wu W. On greedy randomized coordinate descent methods for solving large linear leastsquares problems[J]. Numer. Linear Algebra Appl., 2019, 26:e2237. [4] Bai Z, Wu W. On greedy randomized Kaczmarz method for solving large sparse linear systems[J]. SIAM J. Sci. Comput., 2018, 40(1):592-606. [5] Bai Z, Wu W. On partially randomized extended Kaczmarz method for solving large sparse overdetermined inconsistent linear systems[J]. Linear Algebra Appl., 2019, 578, 225-250. [6] Bai Z, Wu W. On relaxed greedy randomized Kaczmarz methods for solving large sparse linear systems[J]. Appl. Math. Lett., 2018, 83:21-26. [7] Bai Z, Wu W. On convergence rate of the randomized Kaczmarz method[J]. Linear Algebra Appl., 2018, 553:252-269. [8] Behera R, Mishra D. Further results on generalized inverses of tensors via the Einstein product[J]. Linear Multilinear Algebra, 2017, 65:1662-1682. [9] Brazell M, Li N, Navasca C, Tamon C. Solving multilinear systems via tensor inversion[J]. SIAM J. Matrix Anal. Appl., 2013, 34:542-570. [10] Breheny P, Huang J. Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection[J]. Ann. Appl. Stat., 2011, 5(1):232-253. [11] Canutescu A, Dunbrack J. Cyclic coordinate descent:A robotics algorithm for protein loop closure[J]. Protein Sci., 2003, 12(5):963-972. [12] Chang K, Hsieh C, Lin C. Coordinate descent method for large-scale L2-loss linear support vector machines[J]. J. Mach. Learn Res., 2008, 9:1369-1398. [13] Cichocki A, Zdunek R, Phan A H, Amari S I. Nonnegative matrix factorization and Tensor Factorization, Applications to Exploratory Multi-way Data Analysis and Blind Source Separation. Wiley, 2009. [14] Ding W, Wei Y. Solving multilinear systems with M-tensors[J]. J. Sci. Comput., 2016, 68:689-715. [15] Ding W, Wei Y. Generalized tensor eigenvalue problems[J]. SIAM J. Matrix Anal. Appl., 2015, 36:1073-1099. [16] Einstein A. The foundation of the general theory of relativity, The Collected Papers of Albert Einstein (Princeton University Press, Princeton) (A.J. Kox, M.J. Klein, and R. Schulmann, eds.), 2007, 6:146-200. [17] Gandy S, Recht B, Yamada I. Tensor completion and low-n-rank tensor recovery via convex optimization[J]. Inverse Problems, 2011, 27(2). [18] Huang B, Xie Y, Ma C. Krylov subspace methods to solve a class of tensor equations via the Einstein product[J]. Numer. Linear Algebra Appl., 2019, 26(4):e2254. [19] Khoromskij B N. Tensor numerical methods for high-dimensional PDEs:basic theory and initial applications[J]. ESAIM:Proc Surv., 2015, 48:1-28. [20] Kolda T G, Bader B W. Tensor decompositions and applications[J]. SIAM review, 2009, 51(3):455-500. [21] Lai W M, Rubin D, Krempl E. Introduction to Continuum Mechanics, fourth ed., Oxford, Butterworth-Heinemann, 2010. [22] Lathauwer L D. Decompositions of a higher-order tensor in block terms c part ii:Definitions and uniqueness[J]. SIAM J. Matrix Anal. Appl., 2008, 30(3). [23] Leventhal D, Lewis A. Randomized methods for linear constraints:Convergence rates and conditioning[J]. Math. Oper. Res., 2010, 35(3):641-654. [24] Li W, Liu D, Vong S W. Comparison results for splitting iterations for solving multi-linear systems[J]. Appl. Numeri. Math., 2018, 134:105-121. [25] Li Z, Dai Y H, Gao H. Alternating projection method for a class of tensor equations[J]. J. Comput. Appl. Math., 2019, 346:490-504. [26] Li B, Tian S, Sun Y, Hu Z. Schur-decomposition for 3D matrix equations and its application in solving radiative discrete ordinates equations discretized by Chebyshev collocation spectral method[J]. Jf Comput. Phys., 2010, 229:1198-1212. [27] Luo Z, Qi L, Xiu N. The sparsest solutions to Z-tensor complementarity problems[J]. Optim. lett., 2017, 11(3):471-482. [28] Lu Z, Xiao L. On the complexity analysis of randomized block-coordinate descent methods[J]. Math. Program., 2015, 152(1-2):615-642. [29] Luo Z, Tseng P. On the convergence of the coordinate descent method for convex differentiable minimization[J]. J. Optim. Theory Appl., 1992, 72(1):7-35. [30] Malek A, Bojdi Z, Golbarg P. Solving fully three-dimensional microscale dual phase lag problem using mixed-collocation finite difference discretization[J]. J. Heat Trans., 2012, 134(094504). [31] Necoara I, Nesterov Y, Glineur F. Random block coordinate descent methods for linearly constrained optimization over networks[J]. J. Optim. Theory Appl., 2017, 173(1):227-254. [32] Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems[J]. SIAM J. Optim., 2012, 22(2):341-362. [33] Ng M K, Qi L, Zhou G. Finding the largest eigenvalue of a nonnegative tensor[J]. SIAM J. Matrix Anal. Appl., 2009, 31:1090-1099. [34] Qi L, Luo Z. Tensor Analysis:Spectral Theory and Special Tensors. SIAM, 2017. [35] Qi L, Eigenvalues of a real supersymmetric tensor[J]. J. Symbolic Comput., 2005, 40(6):1302-1324. [36] Qi L, Wang Y, Wu E. D-eigenvalues of diffusion kurtosis tensors[J]. Journal of Comput. Appl. Math., 2008, 221:150-157. [37] Silva V D, Lim L. Tensor rank and the ill-posedness of the best low-rank approximation problem[J]. SIAM J. Matrix Anal. Appl., 2008, 30(3):1084-1127. [38] Smilde A, Bro R, Geladi P. Multi-way Analysis:Applications in the Chemical Sciences[M]. Wiley & Sons, New York, 2004. [39] Song Y, Qi L. Spectral properties of positively homogeneous operators induced by higher order tensors[J]. SIAM J. Matrix Anal. Appl., 2013, 34:1581-1595. [40] Song Y, Qi L. Properties of some classes of structured tensors[J]. J. Optim. Theory Appl., 2015, 165(3):854-873. [41] Song Y, Qi L. Tensor complementarity problem and semi-positive tensors[J]. J. Optim. Theory Appl., 2016, 169(3):1069-1078. [42] Strohmer T, Vershynin R. A randomized Kaczmarz algorithm with exponential convergence[J]. J. Fourier Anal. Appl., 2009, 15:262-278. [43] Sun L, Zheng B, Bu C, Wei Y. Moore-Penrose inverse of tensors via Einstein product[J]. Linear Multi. Algebra, 2016, 64:686-698. [44] Wang X, Chen H, Wang Y. Solution structures of tensor complementarity problem[J]. Front. Math. China, 2018, 6:1-11. [45] Wang Q, Xu X. Iterative algorithms for solving some tensor equations[J]. Linear and Multilinear Algebra, 2019, 67:1325-1349. [46] Wright S. Coordinate descent algorithms[J]. Math. Program., 2015, 151(1):3-34. [47] Xu X, Wang Q. Extending BiCG and BiCR methods to solve the Stein tensor equation[J]. Comput. Math. Appl., 2019, 77:3117-3127. [48] Yang Y, Feng Y, Suykens J. A rank-one tensor updating algorithm for tensor completion[J]. IEEE Signal Proc. Lett., 2015, 22(10):1633-1637. [49] Zhang W, Han D, Li Z. A self-adaptive projection method for solving the multiple-sets split feasibility problem[J]. Inverse Problems, 2009, 25(11):115001. [50] Zhao Z, Yang Q. A simple projection method for solving the multiple-sets split feasibility problem[J]. Inverse Probl. Sci. Eng., 2013, 21(3):537-546. [51] Zhao J, Yang Q. Several acceleration schemes for solving the multiple-sets split feasibility problem[J]. Linear Algebra Appl., 2012, 437:1648-1657. |
[1] | 李启勇, 甘四清, 张浩敏. 随机延迟积分微分方程改进分步向后Euler方法的均方指数稳定性[J]. 数值计算与计算机应用, 2013, 34(4): 241-248. |
[2] | 胡鹏, 黄乘明. 非线性延迟积分微分方程线性多步法的渐近稳定性[J]. 数值计算与计算机应用, 2010, 31(2): 116-122. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||