邱亚南, 王娜, 刘东杰
邱亚南, 王娜, 刘东杰. 扇形区域外问题的自适应边界元方法[J]. 数值计算与计算机应用, 2021, 42(4): 337-350.
Qiu Yanan, Wang Na, Liu Dongjie. THE ADAPTIVE BOUNDARY ELEMENT METHOD FOR PROBLEM IN EXTERIOR SECTOR DOMAIN[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(4): 337-350.
Qiu Yanan, Wang Na, Liu Dongjie
MR(2010)主题分类:
分享此文:
[1] 余德浩. 自然边界元方法的数学理论[M]. 北京: 科学出版社, 1993. [2] 余德浩. 断裂及凹角扇形域上调和正则积分方程的数值解[J]. 数值计算与计算机应用, 1983, (3): 183-188. [3] 陈亚军, 杜其奎. 椭圆外无穷扇形区域边值问题的自然边界元法[J]. 南京师大学报(自然科学版), 2009. [4] 杨敏. 无穷凹角区域椭圆边值问题的区域分解算法[J]. 南京: 南京师范大学, 2003. [5] 祝家麟. 椭圆边值问题的边界元分析[M]. 北京: 科学出版社, 1991. [6] Zhang Xiaoping, Wu Jiming, Yu Dehao. The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application[J]. International J.of Comput. Math.,, 2010, 87(4):855-876. [7] Faermann B. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods[J]. Part I. The two-dimensional case, IMA J. Numer. Anal., 2000, 20:203-234. [8] Carsten Carstensen, Dirk Praetorius. Averaging techniques for the a posteriori bem error control for a Hypersingular integral equation in two dimensions[J]. SIAM J. Sci. Comput., 2007, 29:782-810. [9] Carsten Carstensen, Ernst Pstephan. Adaptive Boundary Element method for some First kind Integral Equations[J]. SIAM J. Numer. Anal., 1996, 33(6):2166-2183. [10] Carstensen C, Stephan E P. A posteriori error estimates for boundary element methods[J]. Math. Comput., 1995, 64(210):483-500. [11] Carstensen C. An a posteriori error estimate for a first-kind integral equation[J]. Math. Comput., 1997, 66(217):139-155. [12] Ervin V J, Heuer N. An adaptive boundary element method for the exterior Stokes problem in three dimensions[J]. IMA J. Numer. Anal., 2006, 26(2):297-325. [13] Mund P, Stephan EP, Weisse J. Two-level methods for the single layer potential in R3[J]. Computing, 1998, 60(3):243-266. [14] Erath C, Ferraz-Leite S, Funken S, Praetorius D. Energy norm based a posteriori error estimation for boundary element methods in two dimensions[J]. Appl NumerMath, 2009, 59(11):2713-2734. [15] Carstensen C, Feischl M, Page M, Praetorius D. HILBERT-a MATLAB inplementation of adaptive 2D-BEM HILBERT is a lovely boundary element research tool[J]. Numer. Algor., 2014, 67:1-32. [16] Erath C, Funken S, Goldenits P, Praetorius D. Simple error estimations for the Galerkin Bem for some Hypersingular Integral Equation in 2D[J]. Appl. Anal., 2012, 92(6):1194-1216. [17] Markus Aurada, Michael Ebner, Michael Feischl, Samuel Ferraz-leite, Thomas Fuhrer, Petra Goldenits, Michael Karkulik, Markus Mayr, and Dirk Praetorius. HILBERT(RELEASE 3):A MATLAB implemeniaition of adaptive bem[J]. Numer. [18] Matthias Maischak. The analytical computeation of Galerkin elements for the Laplace, Lame and Helmholtz rquation in 2D-BEM[J], Preprint, Institut fur Angewandte Mathematik, University Hannover, Hannover, 1999. [19] Wendland W L, Yu Dehao. Adaptive Boundary Element method for strongly Elliptic Integral Equations[J]. Numer. Math. 1988, 53:539-558. [20] Zienkiewicz O C, Zhu J Z. A simple error estimator and adaptive procedure for practical engineering analysis[J]. Int. J. Numer. Meth. Eng., 1987, 24(2):337-357. [21] Feischl M, Führer T, Karkulik M, Praetorius D. ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve[J]. Eng. Anal. Bound Elem., 2014, 38:49-60. |
[1] | 刘会坡,严宁宁. Stokes方程最优控制问题的超收敛分析[J]. 数值计算与计算机应用, 2006, 27(4): 281-291. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||