马亚楠, 王天军, 李冰冰
马亚楠, 王天军, 李冰冰. Korteweg-de Vries方程的时空谱配置方法[J]. 数值计算与计算机应用, 2021, 42(4): 351-360.
Ma Yanan, Wang Tianjun, Li Bingbing. SPACE-TIME SPECTRAL COLLOCATION METHOD FOR KORTEWEG-DE VRIES EQUATION[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(4): 351-360.
Ma Yanan, Wang Tianjun, Li Bingbing
MR(2010)主题分类:
分享此文:
[1] Zabusky N, Galvin C. Shallow water waves, the Korteveg-de Vries equation and solitons[J]. J. Fluid Mech., 1971, 47:811-824. [2] Bernardi C, Maday Y. Spectral methods[M]. in Handbook of Numerical Analysis, 209-486, ed. by Ciarlet P G and Lions J L, Elsevier, Amsterdam, 1997. [3] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods[M]. Springer-Verlag, Berlin, 2006. [4] Guo B Y. Spectral Methods and Their Applications[M]. World Scientific, Singapore, 1998. [5] Shen J, Tang T, Wang L L. Spectral Methods:Algorithms, Analysis and Applications[M]. Springer Series in Computational Mathematics, Vol. 41, Springer-Verlag, Berlin, Heidelberg, 2011. [6] Bar-Yoseph P, Moses E, Zrahia U, Yarin A L. Space-time spectral element methods for onedimensional nonlinear advection-diffusion problems[J] J. Comput. Phys., 1995, 119:62-74 [7] Zrahia U, Bar-Yoseph P. Space-time spectral element method for solution of second-order hyperbolic equations[J] Comput. Methods Appl. Mech. Engrg., 1994, 116:135-146 [8] Tang J G, Ma H P Single and multi-interval Legendre spectral methods in time for parabolic equations[J] Numer. Methods Partial Differential Equations, 2005, 22:1007-1034 [9] Tang J G Ma H P A Legendre spectral method in time for first-order hyperbolic equations[J] Appl. Numer. Math. 2007, 57:1-11 [10] Liu L., Ma H. P. Space-time Spectral method for parabolic inverse problem with unknown control parameter[J]. J. Numer. Meth. Comput. Appl., 2020, 41(1):19-26. [11] Cheng B. On the numerical simulation of Korteveg-de Vries equation with the Petrov-Galerkin finite element method[J]. J. Numer. Meth. & Comput. Appl., 1992, 1:73-80 [12] Jia H L, Wang Z Q. Chebyshev-Hermite spectral collocation method for KdV equations[J]. Commun. Appl. Math. Comput., 2013, 27(1):1-8. [13] Bernard Bialecki, Andreas Karageorghis. Legendre Gauss spectral collocation for the Helmholtz equation on a rectangle[J]. Numer. Algori., 2004, 36:203-227. [14] Wang Z Q Guo B Y Legendre-Gauss-Radau collocation method for solving initial value problems of first order ordinary differential equations[J] J. Sci. Comput. 201252226-255 [15] Wang T J, Yang S. Hermite spectral collocation method for nonlinear Fokker-Planck equation[J]. J. of Anhui University of Technology Natural Science), 2012, 29(4):381-384. [16] Shen J, Tang T. Spectral and High-Order Methods with Applications[M]. Science Press, Beijing, 2006. [17] Cui Y.F., Mao D. K. A Difference Scheme Satisfying Two Conservation Laws for KdV Equation[J]. Commun. Appl. Math. Comput., 2005, 19(2):15-22. |
[1] | 刘亮, 马和平. 带有未知控制参数抛物方程反问题的时空谱方法[J]. 数值计算与计算机应用, 2020, 41(1): 19-26. |
[2] | 戴华平, 钱嘉伟, 王玉涛, 沈非凡, 黄满金. 铜精炼炉内温度测量研究[J]. 数值计算与计算机应用, 2012, 33(4): 251-260. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||