肖斌, 周芷娟, 胡清洁
肖斌, 周芷娟, 胡清洁. 复合凸优化问题的一个非精确多层梯度镜面下降算法[J]. 数值计算与计算机应用, 2021, 42(4): 361-378.
Xiao Bin, Zhou Zhijuan, Hu QingJie. AN INEXACT GRADIENT MIRROR DESCENT ALGORITHM FOR COMPOSITE CONVEX OPTIMIZATION[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(4): 361-378.
Xiao Bin, Zhou Zhijuan, Hu QingJie
MR(2010)主题分类:
分享此文:
[1] Candès E J. Compressive sampling[C]. Proceedings of the International Congress of Mathematicians, 2006, 3:1433-1452. [2] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306. [3] Wright J, Ma Y, Mairal J, et al. Sparse representation for computer vision and pattern recognition[J]. Proceedings of the IEEE, 2010, 98(6):1031-1044. [4] Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(2):210-227. [5] Candès E J, Romberg J, Tao T. Robust uncertainty principles:Exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2):489-509. [6] Engl H W, Hanke M, Neubauer A. Regularization of inverse problems[M]. Springer Science and Business Media, 1996. [7] Chen P, Huang J, Zhang X. A primal dual fixed point algorithm for convex separable minimization with applications to image restoration[J]. Inverse Problems, http://dx.doi.org/10.1088/0266-5611/29/2/025011,2013,29(2). [8] Hovhannisyan V, Parpas P, Zafeiriou S. MAGMA:Multilevel accelerated gradient mirror descent algorithm for large-scale convex composite minimization[J]. SIAM Journal on Imaging Sciences, 2016, 9(4):1829-1857. [9] Dong Q, Liu X, Wen Z W, et al. A parallel line search subspace correction method for composite convex optimization[J]. Journal of the Operations Research Society of China, 2015, 3(2):163-187. [10] Machart P, Anthoine S, Baldassarre L. Optimal computational trade-off of inexact proximal methods[J]. https://arxiv.xilesou.top/pdf/1210.5034.pdf,2012. [11] Schmidt M, Roux N L, Bach F R. Convergence rates of inexact proximal-gradient methods for convex optimization[C]. Advances in Neural Information Processing Systems, 2011:1458-1466. [12] Richtárik P, Takáč M. Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function[J]. Mathematical Programming, 2014, 144(1-2):1-38. [13] Tseng P, Yun S. Block-coordinate gradient descent method for linearly constrained nonsmooth separable optimization[J]. Journal of Optimization Theory and Applications, 2009, 140(3):513-535. [14] Saha A, Tewari A. On the finite time convergence of cyclic coordinate descent methods[J]. Computer Science, 2010, 23(1):576-601. [15] Salzo S. The variable metric forward-backward splitting algorithm under mild differentiability assumptions[J]. SIAM Journal on Optimization, 2017, 27(4):2153-2181. [16] Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1):183-202. [17] Jiang K, Sun D, Toh K C. An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP[J]. SIAM Journal on Optimization, 2012, 22(3):1042-1064. [18] Allen-Zhu Z, Orecchia L. Linear coupling:An ultimate unification of gradient and mirror descent[J]. Mathematics, 2014. [19] Bonettini S, Rebegoldi S, Ruggiero V. Inertial Variable Metric Techniques for the Inexact Forward-Backward Algorithm[J]. SIAM Journal on Scientific Computing, 2018, 40(5):A3180-A3210. [20] Gu B, Wang D, Huo Z, et al. Inexact proximal gradient methods for non-convex and non-smooth optimization[C]. Thirty-Second AAAI Conference on Artificial Intelligence, 2018. [21] Nesterov Y. Introductory lectures on convex optimization:A basic course[M]. Springer Science Business Media, 2013. [22] Daubechies I, Defrise M, De Mol C, et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint[J]. Communications on Pure and Applied Mathematics, 2004, 57(11):1413-1457. [23] Briggs W L. Van Emden Henson, and Steve F. McCormick[J]. A Multigrid Tutorial, 2nd ed., SIAM, Philadelphia. [24] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society, 2011, 58(1):267-288. [25] Fadili J, Peyŕe G. Total variation projection with first order schemes[J]. IEEE Transactions on Image Processing, 2011, 20(3):657-669. [26] Cai J F, Candès E J and Shen Z. A singular value thresholding algorithm for matrix compeletion[J]. SIAM Journal on Optimization, 2010, 20(4):1956-1982. [27] Nash S G. A multigrid approach to discretized optimization problems[J]. Optimization Methods and Software, 2000, 14(1):99-116. [28] Wen Z. Goldfarb D., A line search multigrid method for large-scale nonlinear optimization[J]. SIAM Journal on Optimization, 2009, 20(3):1478-1503. [29] Panos P. A Multilevel Proximal Gradient Algorithm for a Class of Composite Optimization Problems[J]. SIAM Journal on Scientific Computing, 2017, 39(5):S681-S701. |
[1] | 刘紫娟, 李慧云, 刘新为. 外推系数带参数的加速邻近梯度算法[J]. 数值计算与计算机应用, 2016, 37(3): 211-222. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||