杜玉龙1, 徐凯文2,3, 赵昆磊2,3, 袁礼2,3
杜玉龙, 徐凯文, 赵昆磊, 袁礼. 基于PHG平台的非结构四面体网格欧拉方程间断有限元并行求解器[J]. 数值计算与计算机应用, 2021, 42(2): 155-168.
Du Yulong, Xu Kaiwen, Zhao Kunlei, Yuan Li. A PARALLEL DGM SOLVER FOR THE EULER EQUATIONS ON UNSTRUCTURED TETRAHEDRAL GRIDS BASED ON THE TOOLBOX PHG[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(2): 155-168.
Du Yulong1, Xu Kaiwen2,3, Zhao Kunlei2,3, Yuan Li2,3
MR(2010)主题分类:
分享此文:
[1] Anderson J D, 姚朝辉, 周强(编译). 计算流体力学入门[M]. 清华大学出版社, 北京, 2010. [2] Toro E F. Riemann Solvers and Numerical Methods for Fluid Dynamics[M]. Springer-Verlag, Berlin Heidelberg, 2009. [3] Blazek J. Computational Fluid Dynamics: Principles and Applications[M]. Elsevier Science, Oxford, 2005. [4] Shu C W. Discontinuous Galerkin methods: General approach and stability[J]. Numerical Solutions of Partial Differential Equations, Adv. Courses Math. CRM Barcelona, 2009, 149–201. [5] Rivière Béatrice. Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation[M]. SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2008. [6] Cheng J and Shu C W. High order schemes for CFD: A Review[J]. 计算物理, 2009, 26(5): 633–655. [7] Cockburn B, Shu C W. Runge-Kutta discontinuous Galerkin Methods for convection-dominated problems[J]. Journal of Scientific Computing, 2001, 16(3): 173–259. [8] Cockburn B, Shu C W. The Runge-Kutta discontinuous Galerkin method for conservation Laws V: Multidimensional systems[J]. Journal of Computational Physics, 1998, 141(2): 199–224. [9] 刘岩, 关振群, 张洪武, 张占群. 面向大规模科学计算的三维Delaunay快速插点算法[J]. 中国科学: 物理学力学天文学, 2012, 42(2): 192–198. [10] Peraire J, Vahdati M, Morgan K and Zienkiewicz O C. Adaptive remeshing for compressible flow computations[J]. Journal of Computational Physics, 1987, 72(2): 449–466. [11] Naddeia F, Plataa M L, Couailliera V and Coquel F. A comparison of refinement indicators for p-adaptive simulations of steady and unsteady flows using discontinuous Galerkin methods[J]. Journal of Computational Physics, 2019, 376: 508–533. [12] 杨雨薇, 虞佳磊, 张亚萍, 李幸刚, 邱晓朴. 基于非结构自适应网格的二维Euler方程数值求解方法研究[J]. 应用数学和力学, 2016, 37(9): 981–992. [13] Yu X J, Wu D, Xu Y. Three dimensional discontinuous Galerkin methods for Euler equations on adaptive conforming meshes[J]. Comput. Phys. Commu., 2011, 182: 1771–1775. [14] Conroya C J, Kubatko E J, Nappi A, et al.. HP discontinuous Galerkin methods for parametric, wind-driven water wave models[J]. Advances in Water Resources, 2018, 119: 70–83. [15] 夏轶栋, 伍贻兆, 吕宏强, 宋江勇. 高阶间断有限元法的并行计算研究[J]. 空气动力学学报, 2011, 29(5): 537–541. [16] Fujii K. Progress and future prospects of CFD in aerospace-wind tunnel and beyond[J]. Progress in Aerospace Sciences, 2005, 41(6): 455–470. [17] Kroll N. ADIGMA-A European project on the development of adaptive higher-order variational methods for aerospace applications[P]. 47th AIAA Aerospace Sciences Meeting, 2009. [18] Slotnick J, Khodadoust A, Alonso J, Darmofal D, et al.. CFD vision 2030 Study: A path to revolutionary computational aerosciences[P]. NASA Langley Research Center, 2013, NASA/CR-2014-218178. [19] Park J S, Kim C. Multi-dimensional limiting process for finite volume methods on unstructured grids[J]. Computers & Fluids, 2012, 65: 8–24. [20] Park J S, Kim C. Higher-order multi-dimensional limiting strategy for discontinuous Galerkin methods in compressible inviscid and viscous flows[J]. Computers & Fluids, 2014, 96: 377–396. [21] Zhang F, Liu J, Chen B S. Modified multi-dimensional limiting process with enhanced shock stability on unstructured grids[J]. Computers & Fluids, 2018, 161: 171–188. [22] Barth T J, Jespersen D C. The design and application of upwind schemes on unstructured meshes[P]. 27th AIAA aerospace sciences meeting, Reno RV, 1989, No. AIAA 89–0366. [23] Touze C Le, Murrone A, and Guillard H. Multislope MUSCL method for general unstructured meshes[J]. Journal of Computational Physics, 2015, 284: 389–418. [24] Sohn S I. A new TVD-MUSCL scheme for hyperbolic conservation laws[J]. Computers & Mathematics with Applications, 2005, 50: 231–248. [25] Panagiotis T. Extended bounds limiter for high-order finite-volume schemes on unstructured meshes[J]. Journal of Computational Physics, 2018, 362: 69–94. [26] Shu C W. TVB uniformly high-order schemes for conservation laws[J]. Mathematics of Computation, 1987, 49(179): 105–121. [27] 张林波, 郑伟英, 卢本卓等. 并行自适应有限元软件平台\,PHG\,及其应用[J]. 中国科学: 信息科学, 2016, 46(10): 1442–1464. [28] Zhang L B. A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection[J]. Numerical Mathematics: Theory, Methods and Applications, 2009, 2(1): 65–89. [29] 刘辉, 冷伟, 崔涛. 并行自适应有限元计算中的负载平衡研究[J]. 数值计算与计算机应用, 2015, 36(3): 166–184. [30] 刘辉, 张林波. 自适应有限元常用标记策略及其在PHG中的并行实现[J]. 数值计算与计算机应用, 2009, 30(4): 315–320. [31] Shu C W and Osher S. Efficient implementation of essentially non-oscillatory shock-capturing schemes[J]. Journal of Computational Physics, 1988, 77(2): 439–471. [32] Spiteri R J, Ruuth S J. A new class of optimal high-order strong-stability-preserving time discretization methods[J]. Siam Journal on Numerical Analysis, 2003, 40(2): 469–491. [33] Luo H, Baum J D and Löhner R. A discontinuous Galerkin method based on a Taylor basis for the compressible flows on arbitrary grids[J]. Journal of Computational Physics, 2008, 227: 8875–8893. [34] 王承尧, 王正华, 杨晓辉. 计算流体力学及其并行算法[M]. 国防科技大学出版社, 长沙, 1999. [35] Zhou T, Li Y F and Shu C W. Numerical comparison of WENO finite volume and Runge-Kutta discontinuous Galerkin methods[J]. J. Sci. Comput., 2001, 16: 145–171. [36] Dumbser M, Käser M, Titarev V A and Toro E F. Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems[J]. Journal of Computational Physics, 2007, 226: 204–243. |
[1] | 李辰, 郭启龙, 孙东, 刘朋欣. 一种求解双曲守恒律方程的中心型WENO格式[J]. 数值计算与计算机应用, 2020, 41(3): 246-258. |
[2] | 邓维山, 徐进. 一种泊松-玻尔兹曼方程稳定算法的高效有限元并行实现[J]. 数值计算与计算机应用, 2018, 39(2): 91-110. |
[3] | 吴长茂, 杨超, 尹亮, 刘芳芳, 孙乔, 李力刚. 基于CPU-MIC异构众核环境的行星流体动力学数值模拟[J]. 数值计算与计算机应用, 2017, 38(3): 197-214. |
[4] | 宋梦召, 冯仰德, 聂宁明, 王武. 基于空位跃迁的KMC并行实现[J]. 数值计算与计算机应用, 2017, 38(2): 130-142. |
[5] | 刘辉, 冷伟, 崔涛. 并行自适应有限元计算中的负载平衡研究[J]. 数值计算与计算机应用, 2015, 36(3): 166-184. |
[6] | 刘辉, 崔涛, 冷伟. hp自适应有限元计算中一种新的自适应策略[J]. 数值计算与计算机应用, 2015, 36(2): 100-112. |
[7] | 吴立飞, 杨晓忠, 张帆. 非线性Leland方程的一种并行本性差分方法[J]. 数值计算与计算机应用, 2014, 35(1): 69-80. |
[8] | 段班祥, 朱小平, 张爱萍. 解线性互补问题的并行交替迭代算法[J]. 数值计算与计算机应用, 2011, 32(3): 183-195. |
[9] | 王顺绪, 戴华. 二次特征值问题的并行Jacobi-Davidson方法及其应用[J]. 数值计算与计算机应用, 2008, 29(4): 313-320. |
[10] | 姜金荣,迟学斌,陆忠华,刘洪利. 在MM5中实现IKAWA参数自适应选择[J]. 数值计算与计算机应用, 2007, 28(3): 215-220. |
[11] | 李永刚,欧阳洁,肖曼玉. 基于时间分解求解时间依赖问题的并行算法研究[J]. 数值计算与计算机应用, 2007, 28(1): 27-37. |
[12] | 余胜生,文元桥,周敬利. 隧道算法的分布式并行计算模型[J]. 数值计算与计算机应用, 2006, 27(4): 299-306. |
[13] | 曹建文,刘洋,孙家昶,姚继锋,潘峰. 大规模油藏数值模拟软件并行计算技术及在Beowulf系统上的应用进展[J]. 数值计算与计算机应用, 2006, 27(2): 86-95. |
[14] | 吕桂霞,马富明. 二维热传导方程有限差分区域分解算法[J]. 数值计算与计算机应用, 2006, 27(2): 96-105. |
[15] | 盛志强,刘兴平,崔霞. 对抛物方程使用新显格式的区域分解算法[J]. 数值计算与计算机应用, 2005, 26(4): 249-261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||