• 论文 • 上一篇
王居方, 刘铁钢
王居方, 刘铁钢. 非结构网格上针对间断有限元方法的初值重映流场收敛加速技术[J]. 数值计算与计算机应用, 2021, 42(2): 169-182.
Wang Jufang, Liu Tiegang. SOLUTION REMAPPING TECHNIQUE TO ACCELERATE FLOW CONVERGENCE FOR DISCONTINUOUS GALERKIN METHODS ON UNSTRUCTURED MESHES[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(2): 169-182.
Wang Jufang, Liu Tiegang
MR(2010)主题分类:
分享此文:
[1] Slotnick J, Khodadoust A, Alonso J, Darmofal D, Gropp W, Lurie E, Mavriplis D. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences[J]. NASA/CR-2014-218178, NF1676L-18332, 2014. [2] Wang Z J, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh H T, Kroll N, May G, Persson P O, van Leer B, Visbal M. High-order CFD methods: current status and perspective[J]. International Journal for Numerical Methods in Fluids, 2013, 72(8): 811–845. [3] Cockburn B, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: General framework[J]. Mathematics of Computation, 1989, 52(186): 411–435. [4] Cockburn B, Lin S Y, Shu C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems[J]. Journal of Computational Physics, 1989, 84(1): 90–113. [5] Cockburn B, Hou S, Shu C W. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case[J]. Mathematics of Computation, 1990, 54(190): 545–581. [6] Cockburn B, Shu C W. The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V: Multidimensional Systems[J]. Journal of Computational Physics, 1998, 141(2): 199–224. [7] Bhabra M, Nadarajah S. Aerodynamic Shape Optimization for the NURBS-Enhanced Discontinuous Galerkin Method [C]. In AIAA Aviation 2019 Forum, 2019. [8] Kaland L, Sonntag M, Gauger N R. Adaptive Aerodynamic Design Optimization for Navier-Stokes Using Shape Derivatives with Discontinuous Galerkin Methods [G]. In Greiner D, Galván B, Périaux J, Gauger N, Giannakoglou K, Winter G, editors, Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences, pages 143–158. Springer International Publishing, Cham, 2015. [9] Li D, Hartmann R. Adjoint-based airfoil optimization with discretization error control[J]. International Journal for Numerical Methods in Fluids, 2015, 77(1): 1–17. [10] Lu J. An a posteriori Error Control Framework for Adaptive Precision Optimization using Discontinuous Galerkin Finite Element Method[D]. PhD thesis, Massachusetts Institute of Technology, 2005. [11] Wang K, Yu S, Wang Z, Feng R, Liu T. Adjoint-based airfoil optimization with adaptive isogeometric discontinuous Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 602–625. [12] Zahr M J, Persson P O. High-order, time-dependent aerodynamic optimization using a discontinuous Galerkin discretization of the Navier-Stokes equations [C]. In 54th AIAA Aerospace Sciences Meeting, 2016. [13] Zahr M J, Persson P O. Energetically Optimal Flapping Wing Motions via Adjoint-Based Optimization and High-Order Discretizations [G]. In Antil H, Kouri D P, Lacasse M D, Ridzal D, editors, Frontiers in PDE-Constrained Optimization, pages 259–289. Springer New York, New York, NY, 2018. [14] Wang Z. A perspective on high-order methods in computational fluid dynamics[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(1): 614701. [15] Wang J, Liu T. Local-Maximum-and-Minimum-Preserving Solution Remapping Technique to Accelerate Flow Convergence for Discontinuous Galerkin Methods in Shape Optimization Design[J]. Journal of Scientific Computing, 2021, 87: 79. https://doi.org/10.1007/s10915-021-01499-8 [16] Wang J, Wang Z, Liu T. Solution Remapping Technique to Accelerate Flow Convergence for Finite Volume Methods Applied to Shape Optimization Design[J]. Numerical Mathematics: Theory, Methods and Applications, 2020, 13(4): 863–880. [17] de Boer A, van der Schoot M S, Bijl H. Mesh deformation based on radial basis function interpolation[J]. Computers & Structure, 2007, 85(11-14): 784–795. [18] Hicks R M, Henne P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7): 407–412. [19] Spall J C. An overview of the simultaneous perturbation method for efficient optimization[J]. Johns Hopkins apl technical digest, 1998, 19(4): 482–492. [20] Spall J C. Introduction to stochastic search and optimization: estimation, simulation, and control[M]. John Wiley & Sons, 2005. [21] Xing X Q, Damodaran M. Application of simultaneous perturbation stochastic approximation method for aerodynamic shape design optimization[J]. AIAA Journal, 2005, 43(2): 284–294. |
[1] | 杜玉龙, 徐凯文, 赵昆磊, 袁礼. 基于PHG平台的非结构四面体网格欧拉方程间断有限元并行求解器[J]. 数值计算与计算机应用, 2021, 42(2): 155-168. |
[2] | 秦佩华. 非光滑区域上椭圆型特征值问题的间断有限元方法应用[J]. 数值计算与计算机应用, 2012, 33(4): 293-300. |
[3] | 袁美,宋松和. 二维非结构网格浅水波方程的二阶精度非振荡有限体积方法[J]. 数值计算与计算机应用, 2008, 29(1): 49-55. |
[4] | 张强. 对流扩散方程的间断Galerkin自适应方法[J]. 数值计算与计算机应用, 2008, 29(1): 56-64. |
[5] | 朱君,赵宁. Euler方程非结构网格分布式并行计算[J]. 数值计算与计算机应用, 2007, 28(3): 161-166. |
[6] | 张阳. 一阶非定常双曲问题的间断-差分流线扩散法及其误差估计[J]. 数值计算与计算机应用, 2007, 28(1): 18-26. |
[7] | 朱思美,宋松和. 非结构网格上解二维Hamilton-Jacobi方程的一种有限体积方法[J]. 数值计算与计算机应用, 2006, 27(2): 133-138. |
[8] | 唐玲艳,宋松和. 二维非结构网格Hamilton-Jacobi方程的一种简化的加权ENO格式[J]. 数值计算与计算机应用, 2005, 26(3): 183-190. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||