• 青年评述 • 下一篇
唐敏
唐敏. 趋化群体运动中的建模分析和计算[J]. 数值计算与计算机应用, 2021, 42(2): 91-103.
Tang Min. MODELING, ANALYSIS AND COMPUTATIONAL METHODS IN POPULATION LEVEL CHEMOTAXIS[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(2): 91-103.
Tang Min
MR(2010)主题分类:
分享此文:
[1] Keller E F, Segel L A. Traveling bands of chemotactic bacteria: A theoretical analysis[J]. J. Theor. Biol., 1971, 30: 235–248. [2] Y. Tao M. Winkler N. Bellomo A B. Toward a mathematical theory of Keller-Segel modelsof pattern formation in biological tissues[J]. Mathematical Models and Methods in Applied Sciences, 2015, 25(9). [3] Berg H C. Random Walks in Biology[M]. Princetosn University Press, 1984. [4] Othmer S D H, Alt W. Swimming bacteria power microscopic gears[J]. J. Math. Biol., 1988, 26: 263–298. [5] Hillen T, Othmer H. The diffusion limit of transport equations derived from velocity jump processes[J]. SIAM J. Appl. Math., 2000, 61(3): 751–775. [6] Othmer H, Hillen T. The diffusion limit of transport equations II: Chemotaxis equations[J]. SIAM J. Appl. Math., 2002, 62(4): 1122–1250. [7] Benoît Perthame Christian Schmeiser Fabio A. C. C. Chalub, Peter A. Markowich. Kinetic Models for Chemotaxis and their Drift-Diffusion Limits[J]. Monatshefte für Mathematik, 2004, 142: 123–141. [8] Erban R, Othmer H. From individual to collective behavior in bacterial chemotaxis[J]. SIAM J. Appl. Math., 2004, 65(2): 361–391. [9] Si G, Wu T, Ouyang Q, Tu Y. A Pathway-based mean-field model for Escherichia coli chemotaxis[J]. Phys. Rev. Lett., 2012, 109: 048101. [10] Si G, Tang M, Yang X. A pathway-based mean-field model for E. coli chemotaxis: Mathematical derivation and Keller-Segel limit[J]. Multiscale Modeling and Simulations, 2014, 12(2): 907–926. [11] Xue C. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling.[J]. J Math Biol, Jan 2015, 70(1-2): 1–44. [12] M. Tang B. Perthame W S, Yasuda S. Multiple asymptotics of kinetic equations with internal states[J]. Mathematical Models and Methods in Applied Sciences, 2020, 30: 1041–1073. [13] Tu Y. Quantitative Modeling of Bacterial Chemotaxis: Signal Amplification and Accurate Adaptation.[J]. Annu Rev Biophys, Feb 2013. [14] Othmer H, Xin X, Xue C. Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation[J]. Int. J. Mol. Sci., 2013, 14(5): 9205– 9248. [15] S. Leibler P. Cluzel M S. An Ultrasensitive Bacterial Motor Revealed by Monitoring Signaling Proteins in Single Cells[J]. Science, 2000, 287: 1652–1655. [16] Hazelbauer G L, Falke J J, Parkinson J S. Bacterial chemoreceptors: high-performance signaling in networked arrays[J]. Trends Biochem. Sci., 2008, 33: 9–19. [17] Horstmann D. From 1970 until now: The Keller-Segel model in chemotaxis and its consequences I.[J]. Jahresber. DMV, 2003, 105: 103–165. [18] Horstmann D. From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II.[J]. Jahresber. DMV, 2004, 106: 51–69. [19] Cisneros L, Dombrowski C, Wolgemuth C W, Kessler J O, Goldstein R E, Tuval I. Bacterial swimming and oxygen transport near contact lines[J]. Proceedings of the National Academy of Sciences, 102(7). [20] Liu J G, Lorz A. A coupled chemotaxis-fluid model: Global existence[J]. Annales de l’Institut Henri PoincaréC, Analyse non linéaire, 2011, 28: 643–652. [21] N. Bournaveas A. Buguin P. Silberzan J. Saragosti V C, Perthame B. Mathematical description of bacterial traveling pulses[J]. PLoS Comput. Biol., 2010, 6: e1000890. [22] Emako C, Gayrard C, Buguin A, de Almeida L N, Vauchelet N. Traveling Pulses for a Two-Species Chemotaxis Model[J]. PLoS Comput. Biol., 2016, 12: e1004843. [23] Nagai T. Blow-up of radially symmetric solutions to a chemotaxis system[J]. Adv. Math. Sci. Appl., 1995, 3: 581–601. [24] Medina E, Velázquez J J L, Herrero M A. Finite-time aggregation into a single point in a reactiondiffusion system[J]. Nonlinearity, 1997, 10: 1739–1754. [25] Blanchet A, Dolbeault J, Perthame B. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[J]. Electron. J. Differential Equations, 2006, 44: 32. [26] N. Masmoudi A. Blanchet J A C. Infinite time aggregation for the critical Patlak-Keller-Segel model in R2[J]. Commun. Pure Appl. Math., 2008, 61: 1449–1481. [27] H. Zaag L. Corrias B P. Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[J]. Milan J. Math., 2004, 72: 1–28. [28] Perthame B. PDE models for chemotactic movements: parabolic, hyperbolic and kinetic.[J]. Appl. Math, 2004, 49: 539–564. [29] Nadin B P G, Ryzhik L. Traveling waves for the Keller-Segel system with Fisher birth terms[J]. Interface free bound., 2008, 10: 517–538. [30] Min Tang Benoît Perthame, Christian Schmeiser, Vauchelet N. Traveling plateaus for a hyperbolic Keller-Segel system with logistic sensitivity; existence and branching instabilities[J]. Nonlinearity, 2011, 24: 1253–1270. [31] Calvez V, Perthame B, Yasuda S. Traveling wave and aggregation in Flux-Limited Keller-Segel model[J]. Kinetic and Related Models, 2018, 11(4): 891–909. [32] Ebde M A, Calvez V, Corrias L. Blow-up, concentration phenomena and global existence for the Keller-Segel model in high dimensions[J]. Commun. Partial Di. Eqs., 2012, 37: 561–584. [33] Zhou G, Saito N. Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis[J]. Numer. Math., 2017, 135: 265–311. [34] Chertock A, Kurganov A. A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models[J]. Numerische Mathematik, 2008, 111: 169–205. [35] Zhou Zhennan, Guo Jian, Liu L W. Positivity-Preserving And Asymptotic Preserving Method For 2D Keller-Segal Equations[J]. Mathematics Of Computation, May 2018, 87: 1165–1189. [36] Filbet F. A finite volume scheme for the Patlak-Keller-Segel chemotaxis model[J]. Numer. Math., 2006, 104: 457–488. [37] Oliver Leingang Ansgar Jüngel. Blow-up of solutions to semi-discrete parabolic-elliptic KellerSegel models[J]. Discrete and Continuous Dynamical Systems-series B, 2019, 24. [38] Dolak Y, Schmeiser C. Kinetic Models for Chemotaxis: Hydrodynamic limits and spatio-temporal mechanics[J]. J. Math. Biol., 2005, 51: 595–615. [39] Bellomo N, Winkler M. A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up[J]. Commun. Part. Diff. Eq., 2017, 42: 436–473. [40] Volzone B, Carrillo J A, Hittmeir S, Yao Y. Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotic[J]. Invent. Math., 2019, 218(3): 889–977. [41] Liu J G, Yang R. A random particle blob method for the Keller-Segel equation and convergence analysis[J]. Math. Comp., 2017, 86: 725–745. [42] F. Otto R. Jordan D K. The variational formulation of the Fokker-Plank equation[J]. SIAM. J. Math. Anal., 1998, 29: 1–17. [43] Carrillo J A, Santambrogio F. L∞ estimates for the JKO scheme in parabolic-elliptic Keller-Segel systems[J]. Quarterly of Applied Mathematics, 2018, 76: 515–530. [44] Li Wang J. A. Carrillo K C, Wei C. Primal dual methods for Wasserstein gradient flows[J]. submitted. [45] Berg H, Brown D. Chemotaxis in Escherichia coli analysed by three-dimensional tracking[J]. Nature, 1972, 239: 500–504. [46] Berg H. Motile behavior of bacteria[J]. Physics Today, 2000, 53: 24–29. [47] Hillen K P T. A user’s guide to PDE models for chemotaxis[J]. J. Math. Biol., 2009, 58: 183–217. [48] N. Bournaveas B. Perthame A. Buguin J. Saragosti V C, Silberzan P. Directional persistence of chemotactic bacteria in a traveling concentration wave[J]. PNAS, 2011, 108: 16235–16240. [49] Hillen T. Hyperbolic models for chemosensitive movement[J]. Math. Models Methods Appl. Sci., 2002, 12(7): 1007–1034. [50] Hillen T. Dolak Y. Cattaneo models for chemotaxis, numerical solution and pattern formation[J]. J. Math. Biol., 2003, 46: 461–478. [51] Filbet F, Laurencot P, Perthame B. Derivation of hyperbolic models for chemosensitive movement[J]. J. Math. Biol., 2005, 50: 189–207. [52] Perthame N V B, Wang Z. The flux limited Keller-Segel system: properties and derivation from kinetic equations[J]. Rev. Mat. Iberoam., 2020, 36(2): 357–386. [53] Bournaveas N, Calvez V. Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[J]. Ann. Inst. H. PoincaréC Anal. Non Linéaire, 2009, 26: 1871–1895. [54] Yan B. Carrillo J. An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis[J]. Multiscale Model. Simul.ai, 2013, 11. [55] Schmeiser C, Cuesta C M, Hittmeir S. Traveling waves of a kinetic transport model for the KPP-Fisher equation[J]. SIAM J. Math. Anal., 2012, 44: 4128–4146. [56] Monika Twarogowska Vincent Calvez L G. Travelling Chemotactic Aggregates at Mesoscopic Scale and BiStability[J]. SIAM Journal on Applied Mathematics, 2017, 77. [57] Calvez V. Chemotactic waves of bacteria at the mesoscale[J]. J. Eur. Math. Soc., 2020, 22: 593– 668. [58] Chertock A K A. High-Resolution Positivity and Asymptotic Preserving Numerical Methods for Chemotaxis and Related Models[J]. Active Particles, 2019, 2: 109–148. [59] Filbet C Y F. Numerical Simulations of Kinetic Models for Chemotaxis[J]. SIAM J. Sci. Comput., 2014, 36(3). [60] Filbet F, Shu C W. Discontinuous Galerkin methods for a kinetic model of self-organized dynamics[J]. Mathematical Models and Methods in Applied Sciences, 2018, 28(6). [61] Vauchelet N. Numerical simulation of a kinetic model for chemotaxis[J]. Kin. Rel. Models., 2010, 3(3): 501–528. [62] Kurganov A. Lukáčová-Medvidovà M. Özcan c.N. Chertock, A. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions[J]. Kinet. Relat. Models, 2019, 12: 195–216. [63] Mello B, Tu Y. Quantitative modeling of sensitivity in bacterial chemotaxis: The role of coupling among different chemoreceptor species[J]. Proc. Natl. Acad. Sci., 2003, 100: 8223–8228. [64] Shimizu T, Tu Y, Berg H. A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli[J]. Mol. Syst. Biol., 2010, 6: 382. [65] Liu J, Hu B, Morado D R, Jani S, Manson M D, Margolin W. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells.[J]. Proc Natl Acad Sci U S A, Jun 2012, 109(23): E1481–E1488. [66] Kojadinovic M, Armitage J P, Tindall M J, Wadhams G H. Response kinetics in the complex chemotaxis signalling pathway of Rhodobacter sphaeroides.[J]. J R Soc Interface, Apr 2013, 10(81): 20121001. [67] Jiang L, Ouyang Q, Tu Y. Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time[J]. PLoS Comput. Biol., 2010, 6: e1000735. [68] Liu Lizhong, Ren Xiaojing, Carlos K L, Chau, Li Sihong, Lu Xiang, Zeng Hualing, Chen Guanhua, Tang Lei-Han, Peter Lenz, Cui Xiaodong, Huang Wei, Terence Hwa, Liu Chenli, X F, Huang J D. Sequential establishment of stripe patterns in an expanding cell population[J]. Science, 2011, 334: 238–241. [69] Erban R, Othmer H G. From Signal Transduction to Spatial Pattern Formation in E. coli: A Paradigm for Multiscale Modeling in Biology[J]. Multiscale Modeling & Simulation, 2005, 3(2): 362–394. [70] Xue C, Othmer H. Multiscale models of taxis-driven patterning in bacterial pupulations[J]. SIAM J. Appl. Math., 2009, 70: 133–167. [71] Y. Tu M. Wu Y.V. Kalinin L J. Logarithmic sensing in Escherichia coli bacterial chemotaxis[J]. Biophys J., 2009, 96(6): 2439–2448. [72] Li M T T, Yang X. An augmented Keller-Segel model for E. coli chemotaxis in fast-varying environments[J]. Communication in Mathematical Sciences, 2016, 14(3): 883–891. [73] Perthame B, Tang M, Vauchelet N. Derivation of the bacterial run-and-tumble kinetic equation from a model with biological pathway[J]. J. Math. Biol., 2016, 73: 1161–1178. [74] Sun W R, Tang M. Macroscopic Limits of pathway-based kinetic models for E.coli chemotaxis in large gradient environment[J]. SIAM Multiscale Modeling and Simulation, 2017, 15(2): 797–826. [75] Xue C, Yang X. Moment-flux models for bacterial chemotaxis in large signal gradients[J]. J Math Biol, 2016, 73(4): 977–1000. [76] Xue C X X R, Tang M. The role of intracellular signaling in the stripe formation in engineered Escherichia coli populations[J]. Plos Computational Biology, 2018, 14: e1006178. [77] Harris T H, Banigan E J, Christian D A, Konradt C, Wojno E D T, Norose K, Wilson E H, John B, Weninger W, Luster A D, et al. Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells[J]. Nature, 2012, 486(7404): 545–548. [78] Ariel G, Rabani A, Benisty S, Partridge J D, Harshey R M, Beer A. Swarming bacteria migrate by Lévy Walk.[J]. Nature Communications, 2015, 6(1): 8396–8396. [79] Tu Y, Grinstein G. How white noise generates power-law switching in bacterial flagellar motors[J]. Physical review letters, 2005, 94(20): 208101. [80] Matthäus F, Jagodič M, Dobnikar J. E. coli superdiffusion and chemotaxis—search strategy, precision, and motility[J]. Biophysical journal, 2009, 97(4): 946–957. [81] Korobkova E, Emonet T, Vilar J M, Shimizu T S, Cluzel P. From molecular noise to behavioural variability in a single bacterium[J]. Nature, 2004, 428(6982): 574. [82] Remy C, Christelle R, Ady V, Sourjik V. Multiple Sources of Slow activity fluctuations in a bacterial chemosensory network[J]. Elife, 2017, 6: e26769. [83] Perthame W R S B, Tang M. The fractional diffusion limit of a kinetic model with biochemical pathway[J]. Zeitschrift fur angewandte Mathematik und Physik, 2018, 69(67). [84] Xue M T X. Individual based models exhibiting Lévy-flight type movement induced by intracellular noise[J]. submitted. [85] Liao J. Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit[J]. Journal of Differential Equations, 2015, 259(11): 6432–6458. [86] Vauchelet S Y N. Numerical scheme for kinetic transport equation with internal state[J]. SIAM Multiscale Modeling and Simulation, 2021, 19(1): 184–207. [87] Waite Adam J, Nocholas W, Emonet T. Behavioral Variability and phenotypic diversity in bacteria chemotaxis[J]. Annu. Rev. Biophys., 2018, (47): 595–616. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||