• 青年评述 •    下一篇

趋化群体运动中的建模分析和计算

唐敏   

  1. 上海交通大学数学科学学院, 自然科学研究院, 上海 200240
  • 收稿日期:2021-02-18 出版日期:2021-06-15 发布日期:2021-06-03
  • 作者简介:唐敏, 上海交通大学数学学院和自然科学研究院教授. 主要从事生物和物理中多尺度偏微分方程模型的数值计算和建模以及应用分析. 2000--2004年清华大学本科, 2004--2008年清华大学博士, 2008--2009年法国图卢兹三大博士后, 2009--2011年法国巴黎六大INRIA博士后. 2011年加入上海交通大学数学学院和自然科学研究院. 担任Journal of Mathematical Biology 和Communication in Mathematical Sciences编委. 曾获得上海市浦江人才, 教育部青年长江学者.
  • 基金资助:
    国家自然科学基金(11871340)资助.

唐敏. 趋化群体运动中的建模分析和计算[J]. 数值计算与计算机应用, 2021, 42(2): 91-103.

Tang Min. MODELING, ANALYSIS AND COMPUTATIONAL METHODS IN POPULATION LEVEL CHEMOTAXIS[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(2): 91-103.

MODELING, ANALYSIS AND COMPUTATIONAL METHODS IN POPULATION LEVEL CHEMOTAXIS

Tang Min   

  1. School of Mathematics, Institute of Natural Sciences and MOE-LSC, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2021-02-18 Online:2021-06-15 Published:2021-06-03
趋化运动是细菌寻找食物、逃离有害物质的核心机制. 对于多细胞生物来说, 趋化运动对其发育和健康更是至关重要. 随着对趋化运动越来越多生物细节的理解, 其数学模型也越来越完备和复杂. 本文以大肠杆菌的趋化运动为例, 回顾了三个不同尺度的模型:上个世纪70年代提出的Keller-Segel模型, 80年代末提出的的速度跳跃模型以及本世纪初提出的含信号通路的动理学方程模型. 我们回顾近30年来这些模型提出的背景、建模思想、分析得到的关于解行为特性的一些主要结论, 以及相关数值算法, 并探讨不同尺度模型之间的联系和区别.
Chemotaxis is the central mechanism for bacteria to find food and flee from poisons. In multicellular organisms, chemotaxis is critical for the development and health. Along with the understanding of more biological details of chemotaxis, the mathematical models become more complete and complex. We review three models for E.coli chemotaxis at different scales: the Keller-Segel model proposed in the 70’s last century, the velocity jump model given in the 90s and the pathway-based kinetic model proposed at the beginning of this century. We review the biological background of the proposed models, the modeling ideas, some main analytical results about the features of their solutions, the numerical methods and discuss about the connections and differences between models at different scales.

MR(2010)主题分类: 

()
[1] Keller E F, Segel L A. Traveling bands of chemotactic bacteria: A theoretical analysis[J]. J. Theor. Biol., 1971, 30: 235–248.
[2] Y. Tao M. Winkler N. Bellomo A B. Toward a mathematical theory of Keller-Segel modelsof pattern formation in biological tissues[J]. Mathematical Models and Methods in Applied Sciences, 2015, 25(9).
[3] Berg H C. Random Walks in Biology[M]. Princetosn University Press, 1984.
[4] Othmer S D H, Alt W. Swimming bacteria power microscopic gears[J]. J. Math. Biol., 1988, 26: 263–298.
[5] Hillen T, Othmer H. The diffusion limit of transport equations derived from velocity jump processes[J]. SIAM J. Appl. Math., 2000, 61(3): 751–775.
[6] Othmer H, Hillen T. The diffusion limit of transport equations II: Chemotaxis equations[J]. SIAM J. Appl. Math., 2002, 62(4): 1122–1250.
[7] Benoît Perthame Christian Schmeiser Fabio A. C. C. Chalub, Peter A. Markowich. Kinetic Models for Chemotaxis and their Drift-Diffusion Limits[J]. Monatshefte für Mathematik, 2004, 142: 123–141.
[8] Erban R, Othmer H. From individual to collective behavior in bacterial chemotaxis[J]. SIAM J. Appl. Math., 2004, 65(2): 361–391.
[9] Si G, Wu T, Ouyang Q, Tu Y. A Pathway-based mean-field model for Escherichia coli chemotaxis[J]. Phys. Rev. Lett., 2012, 109: 048101.
[10] Si G, Tang M, Yang X. A pathway-based mean-field model for E. coli chemotaxis: Mathematical derivation and Keller-Segel limit[J]. Multiscale Modeling and Simulations, 2014, 12(2): 907–926.
[11] Xue C. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling.[J]. J Math Biol, Jan 2015, 70(1-2): 1–44.
[12] M. Tang B. Perthame W S, Yasuda S. Multiple asymptotics of kinetic equations with internal states[J]. Mathematical Models and Methods in Applied Sciences, 2020, 30: 1041–1073.
[13] Tu Y. Quantitative Modeling of Bacterial Chemotaxis: Signal Amplification and Accurate Adaptation.[J]. Annu Rev Biophys, Feb 2013.
[14] Othmer H, Xin X, Xue C. Excitation and adaptation in bacteria-a model signal transduction system that controls taxis and spatial pattern formation[J]. Int. J. Mol. Sci., 2013, 14(5): 9205– 9248.
[15] S. Leibler P. Cluzel M S. An Ultrasensitive Bacterial Motor Revealed by Monitoring Signaling Proteins in Single Cells[J]. Science, 2000, 287: 1652–1655.
[16] Hazelbauer G L, Falke J J, Parkinson J S. Bacterial chemoreceptors: high-performance signaling in networked arrays[J]. Trends Biochem. Sci., 2008, 33: 9–19.
[17] Horstmann D. From 1970 until now: The Keller-Segel model in chemotaxis and its consequences I.[J]. Jahresber. DMV, 2003, 105: 103–165.
[18] Horstmann D. From 1970 until now: The Keller-Segel model in chemotaxis and its consequences II.[J]. Jahresber. DMV, 2004, 106: 51–69.
[19] Cisneros L, Dombrowski C, Wolgemuth C W, Kessler J O, Goldstein R E, Tuval I. Bacterial swimming and oxygen transport near contact lines[J]. Proceedings of the National Academy of Sciences, 102(7).
[20] Liu J G, Lorz A. A coupled chemotaxis-fluid model: Global existence[J]. Annales de l’Institut Henri PoincaréC, Analyse non linéaire, 2011, 28: 643–652.
[21] N. Bournaveas A. Buguin P. Silberzan J. Saragosti V C, Perthame B. Mathematical description of bacterial traveling pulses[J]. PLoS Comput. Biol., 2010, 6: e1000890.
[22] Emako C, Gayrard C, Buguin A, de Almeida L N, Vauchelet N. Traveling Pulses for a Two-Species Chemotaxis Model[J]. PLoS Comput. Biol., 2016, 12: e1004843.
[23] Nagai T. Blow-up of radially symmetric solutions to a chemotaxis system[J]. Adv. Math. Sci. Appl., 1995, 3: 581–601.
[24] Medina E, Velázquez J J L, Herrero M A. Finite-time aggregation into a single point in a reactiondiffusion system[J]. Nonlinearity, 1997, 10: 1739–1754.
[25] Blanchet A, Dolbeault J, Perthame B. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[J]. Electron. J. Differential Equations, 2006, 44: 32.
[26] N. Masmoudi A. Blanchet J A C. Infinite time aggregation for the critical Patlak-Keller-Segel model in R2[J]. Commun. Pure Appl. Math., 2008, 61: 1449–1481.
[27] H. Zaag L. Corrias B P. Global solutions of some chemotaxis and angiogenesis systems in high space dimensions[J]. Milan J. Math., 2004, 72: 1–28.
[28] Perthame B. PDE models for chemotactic movements: parabolic, hyperbolic and kinetic.[J]. Appl. Math, 2004, 49: 539–564.
[29] Nadin B P G, Ryzhik L. Traveling waves for the Keller-Segel system with Fisher birth terms[J]. Interface free bound., 2008, 10: 517–538.
[30] Min Tang Benoît Perthame, Christian Schmeiser, Vauchelet N. Traveling plateaus for a hyperbolic Keller-Segel system with logistic sensitivity; existence and branching instabilities[J]. Nonlinearity, 2011, 24: 1253–1270.
[31] Calvez V, Perthame B, Yasuda S. Traveling wave and aggregation in Flux-Limited Keller-Segel model[J]. Kinetic and Related Models, 2018, 11(4): 891–909.
[32] Ebde M A, Calvez V, Corrias L. Blow-up, concentration phenomena and global existence for the Keller-Segel model in high dimensions[J]. Commun. Partial Di. Eqs., 2012, 37: 561–584.
[33] Zhou G, Saito N. Finite volume methods for a Keller-Segel system: discrete energy, error estimates and numerical blow-up analysis[J]. Numer. Math., 2017, 135: 265–311.
[34] Chertock A, Kurganov A. A second-order positivity preserving central-upwind scheme for chemotaxis and haptotaxis models[J]. Numerische Mathematik, 2008, 111: 169–205.
[35] Zhou Zhennan, Guo Jian, Liu L W. Positivity-Preserving And Asymptotic Preserving Method For 2D Keller-Segal Equations[J]. Mathematics Of Computation, May 2018, 87: 1165–1189.
[36] Filbet F. A finite volume scheme for the Patlak-Keller-Segel chemotaxis model[J]. Numer. Math., 2006, 104: 457–488.
[37] Oliver Leingang Ansgar Jüngel. Blow-up of solutions to semi-discrete parabolic-elliptic KellerSegel models[J]. Discrete and Continuous Dynamical Systems-series B, 2019, 24.
[38] Dolak Y, Schmeiser C. Kinetic Models for Chemotaxis: Hydrodynamic limits and spatio-temporal mechanics[J]. J. Math. Biol., 2005, 51: 595–615.
[39] Bellomo N, Winkler M. A degenerate chemotaxis system with flux limitation: Maximally extended solutions and absence of gradient blow-up[J]. Commun. Part. Diff. Eq., 2017, 42: 436–473.
[40] Volzone B, Carrillo J A, Hittmeir S, Yao Y. Nonlinear Aggregation-Diffusion Equations: Radial Symmetry and Long Time Asymptotic[J]. Invent. Math., 2019, 218(3): 889–977.
[41] Liu J G, Yang R. A random particle blob method for the Keller-Segel equation and convergence analysis[J]. Math. Comp., 2017, 86: 725–745.
[42] F. Otto R. Jordan D K. The variational formulation of the Fokker-Plank equation[J]. SIAM. J. Math. Anal., 1998, 29: 1–17.
[43] Carrillo J A, Santambrogio F. L estimates for the JKO scheme in parabolic-elliptic Keller-Segel systems[J]. Quarterly of Applied Mathematics, 2018, 76: 515–530.
[44] Li Wang J. A. Carrillo K C, Wei C. Primal dual methods for Wasserstein gradient flows[J]. submitted.
[45] Berg H, Brown D. Chemotaxis in Escherichia coli analysed by three-dimensional tracking[J]. Nature, 1972, 239: 500–504.
[46] Berg H. Motile behavior of bacteria[J]. Physics Today, 2000, 53: 24–29.
[47] Hillen K P T. A user’s guide to PDE models for chemotaxis[J]. J. Math. Biol., 2009, 58: 183–217.
[48] N. Bournaveas B. Perthame A. Buguin J. Saragosti V C, Silberzan P. Directional persistence of chemotactic bacteria in a traveling concentration wave[J]. PNAS, 2011, 108: 16235–16240.
[49] Hillen T. Hyperbolic models for chemosensitive movement[J]. Math. Models Methods Appl. Sci., 2002, 12(7): 1007–1034.
[50] Hillen T. Dolak Y. Cattaneo models for chemotaxis, numerical solution and pattern formation[J]. J. Math. Biol., 2003, 46: 461–478.
[51] Filbet F, Laurencot P, Perthame B. Derivation of hyperbolic models for chemosensitive movement[J]. J. Math. Biol., 2005, 50: 189–207.
[52] Perthame N V B, Wang Z. The flux limited Keller-Segel system: properties and derivation from kinetic equations[J]. Rev. Mat. Iberoam., 2020, 36(2): 357–386.
[53] Bournaveas N, Calvez V. Critical mass phenomenon for a chemotaxis kinetic model with spherically symmetric initial data[J]. Ann. Inst. H. PoincaréC Anal. Non Linéaire, 2009, 26: 1871–1895.
[54] Yan B. Carrillo J. An asymptotic preserving scheme for the diffusive limit of kinetic systems for chemotaxis[J]. Multiscale Model. Simul.ai, 2013, 11.
[55] Schmeiser C, Cuesta C M, Hittmeir S. Traveling waves of a kinetic transport model for the KPP-Fisher equation[J]. SIAM J. Math. Anal., 2012, 44: 4128–4146.
[56] Monika Twarogowska Vincent Calvez L G. Travelling Chemotactic Aggregates at Mesoscopic Scale and BiStability[J]. SIAM Journal on Applied Mathematics, 2017, 77.
[57] Calvez V. Chemotactic waves of bacteria at the mesoscale[J]. J. Eur. Math. Soc., 2020, 22: 593– 668.
[58] Chertock A K A. High-Resolution Positivity and Asymptotic Preserving Numerical Methods for Chemotaxis and Related Models[J]. Active Particles, 2019, 2: 109–148.
[59] Filbet C Y F. Numerical Simulations of Kinetic Models for Chemotaxis[J]. SIAM J. Sci. Comput., 2014, 36(3).
[60] Filbet F, Shu C W. Discontinuous Galerkin methods for a kinetic model of self-organized dynamics[J]. Mathematical Models and Methods in Applied Sciences, 2018, 28(6).
[61] Vauchelet N. Numerical simulation of a kinetic model for chemotaxis[J]. Kin. Rel. Models., 2010, 3(3): 501–528.
[62] Kurganov A. Lukáčová-Medvidovà M. Özcan c.N. Chertock, A. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions[J]. Kinet. Relat. Models, 2019, 12: 195–216.
[63] Mello B, Tu Y. Quantitative modeling of sensitivity in bacterial chemotaxis: The role of coupling among different chemoreceptor species[J]. Proc. Natl. Acad. Sci., 2003, 100: 8223–8228.
[64] Shimizu T, Tu Y, Berg H. A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli[J]. Mol. Syst. Biol., 2010, 6: 382.
[65] Liu J, Hu B, Morado D R, Jani S, Manson M D, Margolin W. Molecular architecture of chemoreceptor arrays revealed by cryoelectron tomography of Escherichia coli minicells.[J]. Proc Natl Acad Sci U S A, Jun 2012, 109(23): E1481–E1488.
[66] Kojadinovic M, Armitage J P, Tindall M J, Wadhams G H. Response kinetics in the complex chemotaxis signalling pathway of Rhodobacter sphaeroides.[J]. J R Soc Interface, Apr 2013, 10(81): 20121001.
[67] Jiang L, Ouyang Q, Tu Y. Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time[J]. PLoS Comput. Biol., 2010, 6: e1000735.
[68] Liu Lizhong, Ren Xiaojing, Carlos K L, Chau, Li Sihong, Lu Xiang, Zeng Hualing, Chen Guanhua, Tang Lei-Han, Peter Lenz, Cui Xiaodong, Huang Wei, Terence Hwa, Liu Chenli, X F, Huang J D. Sequential establishment of stripe patterns in an expanding cell population[J]. Science, 2011, 334: 238–241.
[69] Erban R, Othmer H G. From Signal Transduction to Spatial Pattern Formation in E. coli: A Paradigm for Multiscale Modeling in Biology[J]. Multiscale Modeling & Simulation, 2005, 3(2): 362–394.
[70] Xue C, Othmer H. Multiscale models of taxis-driven patterning in bacterial pupulations[J]. SIAM J. Appl. Math., 2009, 70: 133–167.
[71] Y. Tu M. Wu Y.V. Kalinin L J. Logarithmic sensing in Escherichia coli bacterial chemotaxis[J]. Biophys J., 2009, 96(6): 2439–2448.
[72] Li M T T, Yang X. An augmented Keller-Segel model for E. coli chemotaxis in fast-varying environments[J]. Communication in Mathematical Sciences, 2016, 14(3): 883–891.
[73] Perthame B, Tang M, Vauchelet N. Derivation of the bacterial run-and-tumble kinetic equation from a model with biological pathway[J]. J. Math. Biol., 2016, 73: 1161–1178.
[74] Sun W R, Tang M. Macroscopic Limits of pathway-based kinetic models for E.coli chemotaxis in large gradient environment[J]. SIAM Multiscale Modeling and Simulation, 2017, 15(2): 797–826.
[75] Xue C, Yang X. Moment-flux models for bacterial chemotaxis in large signal gradients[J]. J Math Biol, 2016, 73(4): 977–1000.
[76] Xue C X X R, Tang M. The role of intracellular signaling in the stripe formation in engineered Escherichia coli populations[J]. Plos Computational Biology, 2018, 14: e1006178.
[77] Harris T H, Banigan E J, Christian D A, Konradt C, Wojno E D T, Norose K, Wilson E H, John B, Weninger W, Luster A D, et al. Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells[J]. Nature, 2012, 486(7404): 545–548.
[78] Ariel G, Rabani A, Benisty S, Partridge J D, Harshey R M, Beer A. Swarming bacteria migrate by Lévy Walk.[J]. Nature Communications, 2015, 6(1): 8396–8396.
[79] Tu Y, Grinstein G. How white noise generates power-law switching in bacterial flagellar motors[J]. Physical review letters, 2005, 94(20): 208101.
[80] Matthäus F, Jagodič M, Dobnikar J. E. coli superdiffusion and chemotaxis—search strategy, precision, and motility[J]. Biophysical journal, 2009, 97(4): 946–957.
[81] Korobkova E, Emonet T, Vilar J M, Shimizu T S, Cluzel P. From molecular noise to behavioural variability in a single bacterium[J]. Nature, 2004, 428(6982): 574.
[82] Remy C, Christelle R, Ady V, Sourjik V. Multiple Sources of Slow activity fluctuations in a bacterial chemosensory network[J]. Elife, 2017, 6: e26769.
[83] Perthame W R S B, Tang M. The fractional diffusion limit of a kinetic model with biochemical pathway[J]. Zeitschrift fur angewandte Mathematik und Physik, 2018, 69(67).
[84] Xue M T X. Individual based models exhibiting Lévy-flight type movement induced by intracellular noise[J]. submitted.
[85] Liao J. Global solution for a kinetic chemotaxis model with internal dynamics and its fast adaptation limit[J]. Journal of Differential Equations, 2015, 259(11): 6432–6458.
[86] Vauchelet S Y N. Numerical scheme for kinetic transport equation with internal state[J]. SIAM Multiscale Modeling and Simulation, 2021, 19(1): 184–207.
[87] Waite Adam J, Nocholas W, Emonet T. Behavioral Variability and phenotypic diversity in bacteria chemotaxis[J]. Annu. Rev. Biophys., 2018, (47): 595–616.
No related articles found!
阅读次数
全文


摘要