• 论文 •

### 有限元特征值计算中的子空间二次解耦算法

1. 中国科学院软件研究所计算科学与并行软件研究室, 北京 100080
• 收稿日期:2021-02-23 出版日期:2021-06-15 发布日期:2021-06-03
• 基金资助:
国家重点研发计划高性能计算重点专项（2016YFB0200601）资助.

Sun Jiachang. ALGORITHMS OF DOUBLE-DECOUPLING SUBSPACES FOR SOLVING FEM EIGEN-PROBLEMS[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(2): 104-125.

### ALGORITHMS OF DOUBLE-DECOUPLING SUBSPACES FOR SOLVING FEM EIGEN-PROBLEMS

Sun Jiachang

1. Institute of Software, Chinese Academy of Sciences, Beijing 100080, China
• Received:2021-02-23 Online:2021-06-15 Published:2021-06-03

By using so-called preconditioning algorithms, it has been successful to solve PDE discrete algebraic systems in high performance computations. However, the potential of PDE eigen-problem solver is still far from expected. It is well-known that from the fundamental algebraic theorem, any n?degree polynomial can be decomposed into a product with several lower degree, such as quadratic polynomials, and linear terms. Therefore, by using some characteristic transforms, such as discrete Fourier, it is possible to decouple the original high order eigen-problem into some lower eigen-problems in parallel. In this paper, we take a cubic Hermite-interpolation as an example, an algorithm of Double-Decoupling Subspaces for Solving FEM Eigen-problems is proposed for solving a class of discrete elliptic generalized eigen-problems. Performance has been raised obviously, comparing with the traditional algorithm: turn to ordinary eigen-problem first, then do diagonalization at once. Moreover, the new algorithm can judge spurious-free and prevent from spurious eigenvalues.

MR(2010)主题分类:

()
 [1] Strang G. An analysis of the finite element method[J]. Prentice-Hall, 1973.[2] 孙家昶. 有关PDE本征问题数学模型与新型计算模式的设想[R]. 国家973“新型计算模式”项目组第一次全体会议大会特邀报告2011.8.20莫干山.[3] Chandra. PhD Thesis[D]. Yale University, 1978.[4] Eisenstat S C, Elman H C and Schultz M H. Variation aliterative methods for nonsymmetric systems of linear equations[J]. Society for Industrial and Applied Mathematics, 1983, 20(2): 345– 357.[5] Sun Jiachang, Cao Jianwen. Large scale petroleum reservoir simulation and parallel preconditioning algorithms reserch[J]. Science in China Ser. A, 2004, 47: 32–40.[6] Sun Jiachang and Li Huiyuan. Generalized Fourier transform on an arbitrary tirangular domain[J]. Advances in Computational Mathematics, 2005, 22: 223–248.[7] Sun J C, Multi-Neighboring Grids Schemes for solving PDE eigen-problems[J]. Sci China Math, 2013, 56: 2677–2700.[8] Sun J C, New schemes with fractal error compensation for PDE eigenvalue computations[J]. Sci China Math, 2014, 57: 221–244.[9] 孙家昶, 曹建文, 张娅. 偏微分方程特征值计算的上下界分析与高精度格式构造[J]. 中国科学: 数学, 2015, 45(8): 1169–1191.[10] Daniele Boffi, Franco Brezzi and Lucia Gastaldi. On the problem of Spurious eigenvalues in the approximation of linear elliptic preblems in mixed form[J]. Mathematics Of Computation, 1999, 69(220): 121–140.[11] Auckenthaler T, Bungartz H J, Huckle T, Kramer L, Lang B, Willems P. Developing algorithms and software for the parallel solution of the symmetric eigenvalue problem[J]. Journal of Computational Science, 2011, 2: 272–278.[12] Auckenthaler T et al. Parallel solution of partial symmetric eigenvalue problem from electronic structure calculations[J]. Parallel Computing, 2011, 27(12): 783–794. doi:10,1016/j.jocs. 2011.05.002[13] Johanni R et al. Scaling of Eigenvalue Solver Dominated Similations. In Technical Report F ZJ -JSCIB2011-02, 2011, 27–30.[14] Buffa A and Perugia I. Discontinuous Galeikin Approximation of the Maxwell Eigenproblem[J]. SIAM Numer. Anal., 2006, 44: 2198–2226[15] Caorsi S, Fernandes P and Raffetto M. On the convergence of Galerkin finite element approximations of eletromagneic eigenproblems[J]. SIAM Numer. Anal., 2000, 38: 580–607.[16] Ahmed N, Natarajan T and Rao K R. Discrete Cosine Transform[J]. IEEE Transsactions on Computers, 1974, 90–93.[17] Britanak V, Yip P C and Rao K R. Discrete Cosine and Sine Transforms General properties, Fast Algorithms and Integer Approximations[M]. Academic Press, 2007.
 [1] 潘佳佳, 李会元. 二阶椭圆问题的弱迦辽金四边形谱元方法[J]. 数值计算与计算机应用, 2021, 42(4): 303-322. [2] 王丽. 三类新的求解广义最小二乘问题的预处理GAOR方法[J]. 数值计算与计算机应用, 2020, 41(4): 282-296. [3] 谢和虎. 子空间扩展算法及其应用[J]. 数值计算与计算机应用, 2020, 41(3): 169-191. [4] 陈星玎, 李思雨. 求解PageRank的多步幂法修正的广义二级分裂迭代法[J]. 数值计算与计算机应用, 2018, 39(4): 243-252. [5] 龚方徽, 孙玉泉, 杨柳. 二次正交Arnoldi方法的隐式重启算法[J]. 数值计算与计算机应用, 2017, 38(4): 256-270. [6] 单炜琨, 李会元. 任意三角形Laplace特征值问题谱方法的数值对比研究[J]. 数值计算与计算机应用, 2015, 36(2): 113-131. [7] 梁觊, 戴华. 求解对称特征值问题的块Chebyshev-Davidson方法[J]. 数值计算与计算机应用, 2011, 32(3): 209-219. [8] 杨志明. Z-矩阵最小特征值界的估计[J]. 数值计算与计算机应用, 2011, 32(2): 81-88. [9] 王顺绪, 戴华. 二次特征值问题的并行Jacobi-Davidson方法及其应用[J]. 数值计算与计算机应用, 2008, 29(4): 313-320.