张建国
The problem whether the iteration formula with the global convergence which does notneed to compute the second order derivative of the function can be found, raised in [7], issolved for f(x)∈C~1(R~1) in the present paper by using the methods of prior estimates andintroducing a parametric function. The main results are as follows: 1. For f(x)∈C~1(R~1), the families of iteration formulas of the global convergence,without derivatives of higher order, are suggested in the following formx_(n+1)=x_n±|f(x_n)|/|f'(x_n)|+α(x_n)|f(x_n)|,(1)x_(n+1)=x_n-α|f(x_n)|/(α-1)f'(x_n)sgnf(x_0)±(f'2(x_n)αp(x_n)|f(x_n)|),(2)x_(n+1)=x_n±|f(x_n)f'(x_n)|/f'2(x_n)+1/2p(x_n)|f(x_n)|,(3)Where the real parameter a∈(0, 2] and the real parametric functions α(x)=α(f(x),f'(x)) (>0) and p(x)= p(f(x), f,(x)) (>0) with certain arbitrariness are continuous orpiecewise continuous. 2. The convergence order of the iteration sequence {x_n} generated by (1), (2) or (3)is 2 for a simple real zero of f(x), and is 1 for a multiple zero.