在[7]中,作者讨论了有限元误差的1-模等价估计.本文是[7]的继续,给出一种自适应有限元计算中误差的1-模渐近准确估计,即对于误差的1-模||e||_1,Ω给出可计算的估计量?,当||e||_1,Ω→0时,成立?/||e||_1,Ω→1. 本文将沿用[7]中的定义及符号.
熟知,Kreiss矩阵定理在差分法稳定性理论中占有十分重要的位置.定理的证明相当复杂,[2]中收入的证明虽经Morton和Schechter作了适当处理,但是被称为证明核心的(R)?(S)的过程仍然繁琐.本文给出一种简单直观的新证明.在证明回路(A)?(R)?(S)?(H)?(A)中,(A)?(R)和(H)?(A)沿用[2]的证明,一并给出.顺便指出,新证明并不影响[2]中对另一重要定理(Buchanan准则)证明的简化,