1.引言 本文讨论如下代数特征值反问题可解的充分条件: 问题A(加法逆特征值问题)。给定一Hermite矩阵A=(a_(ij))_(n×n)及n个实数λ_1,…,λ_n,求一实对角阵D=diag(c_1…,c_n),使得A+D的特征值为λ_1,…,λ_n。 问题M(乘法逆特征值问题)。给定一正定Hermite矩阵A=(a_(ij))_(n×n)和n个正实数
1.引言与预备知识 为方便起见,我们仅考虑如下的模型问题: -△u=f,在Ω中,u|Ω=0, (1.1)其中Ω R~2是边平行坐标轴的矩形域。 W~(m,p)(Ω),W_0~(m,p)(Ω)(m为整数,1≤p≤∞)表示通常定义的Sobolev空间,||·||_(m,p,Ω),|·|_(m,p,Ω)为通常定义的范数和半范数,定义W~(m,2)(Ω):=H~m(Ω),W_0~(m,2)(Ω):=H_0~m(Ω)。