王进芳,张玉海,朱本仁
1.引言 本文研究矩阵方程 X+A*X-qA=I (1)的Hermite正定解,其中I是一个n×n阶单位矩阵, A是一个n×n阶复矩阵, q是实数且q>0.q=1,q=2时的方程是从动态规划,随机过滤,控制理论和统计学中推导出来的,最近已有许多人对此进行了研究(见参考文献[1,2,4]),本文我们将研究方程(1)的解的存在性和解的性质,并讨论迭代求解及迭代解的收敛性. 对于Hermite矩阵X和Y,文中X≥Y表示X-Y是半正定的,X>y表示X-Y是正定的;对于方阵M,M*表示M的共轭转置,ρ(M)表示M的谱半径,λi(M)