李久平,袁益让,
电阻抗成像是一类椭圆方程反问题,本文在三维区域上对其进行数值模拟和分析.对于椭圆方程Neumann边值正问题,本文提出了四面体单元上的一类对称体积元格式,并证明了格式的半正定性及解的存在性;引入单元形状矩阵的概念,简化了系数矩阵的计算;提出了对电阻率进行拼接逼近的方法来降低反问题求解规模,使之与正问题的求解规模相匹配;导出了误差泛函的Jacobi矩阵的计算公式,利用体积元格式的对称性和特殊的电流基向量,将每次迭代中需要求解的正问题的个数降到最低.一系列数值实验的结果验证了数学模型的可靠性和算法的可行性.本文所提出的这些方法,已成功应用于三维电阻抗成像的实际数值模拟.