苏京勋,刘继军,
考虑利用终端时刻的温度u(x,T)=Z_T(x)反演热传导方程u_t-a~2u_(xx)+q(x)u=0,x∈(0,1)中的未知系数q(x)的反问题.通过引进变换v(x,t)=(u_t(x,t)/u(x,t))将此非线性不适定问题的求解分解为两步.首先利用输入数据迭代求解一个非线性的正问题(该过程独立于未知系数),得到其迭代解v~(k)(x,t).其次利用q(x)与v(x,t)的关系式求出q(x)的近似解.对提出的反演方法,证明了采用的变换的可行性,得到了原反问题与由变换后的非线性正问题反演q(x)的等价性并且证明了迭代解的收敛性,给出了收敛速度.数值结果表明了该方法的有效性.