本文我们研究线性周期抛物方程的有限元多格子动力学迭代.多格子动力学迭代又称多重网格波形松弛,它是在函数空间中的一种迭代过程.对于由加速技术得到的多格子动力学迭代算子,我们通过计算周期函数的Fourier系数给出了新的谱表达式.从这些有用的表达式出发,我们推导了时间连续和离散格式的迭代收敛条件.数值实验进一步验证了本文的理论结果.
考虑非线性矩阵方程X-A~*X~(-1)A=Q,其中A是n阶复矩阵,Q是n阶Hermite正定解,A~*是矩阵A的共轭转置.本文证明了此方程存在唯一的正定解,并推导出此正定解的扰动边界和条件数的显式表达式.以上结果用数值例子加以说明.
本文给出了一类与Gear方法类似的k阶线性k步法隐式公式.作者还求出了公式的分数形式的系数,阶数和局部截断误差主项系数,并验证了2-6步公式都具有A(α)稳定的,计算出了它们的幅角α.最后用对比数值实验验证了公式确实是稳定的,并且适合于求解刚性常微分方程.
本文研究极分解和广义极分解.孙和陈提出的Frobenius范数下的逼近定理被推广至任何酉不变范数情形.得到了次酉极因子的一个新的表达式.通过新的表达式,我们得到了次酉极因子在任何酉不变范数下的扰动界.最后,讨论了数值计算方法.