×
模态框(Modal)标题
在这里添加一些文本
关闭
关闭
提交更改
取消
确定并提交
×
模态框(Modal)标题
×
下载引用文件后,可以用常见的文献管理软件打开和编辑,包括: BibTex, EndNote, ProCite, RefWorks, and Reference Manager.
选择文件类型/文献管理软件名称
RIS (ProCite, Reference Manager)
BibTeX
选择包含的内容
仅文章引用信息
引用信息及摘要
导出
中国科学院数学与系统科学研究院期刊网
ISSN 0254-7791 CN 11-2125/O1
Toggle navigation
计算数学
首页
编委会
历届编委会
投稿指南
期刊订阅
下载中心
新闻公告
联系我们
2009年, 第31卷, 第3期 刊出日期:2009-09-15
全选
|
论文
Select
M-
群逆的位移结构
王宏兴, 刘晓冀
计算数学. 2009, 31(3): 225-230.
https://doi.org/10.12286/jssx.2009.3.225
摘要
(
)
PDF全文
(
)
可视化
收藏
本文讨论方阵的
M-
群逆,利用方阵的
M-
群逆给出
A
W
#
U - VA
W
#
的位移秩估计.
Select
求解对称鞍点问题的修正Uzawa方法
庞宏奎, 黎稳
计算数学. 2009, 31(3): 231-242.
https://doi.org/10.12286/jssx.2009.3.231
摘要
(
)
PDF全文
(
)
可视化
收藏
本文基于两个非线性逼近逆的非线性Uzawa方法, 给出了一种新的修正非线性Uzawa方法, 并对其收敛性进行了分析以及与已有算法的收敛性进行了比较.最后由数值试验说明了算法的正确性和有效性.
Select
关于矩阵多项式特征值界的注记
王学锋, 王卫国, 刘新国
计算数学. 2009, 31(3): 243-252.
https://doi.org/10.12286/jssx.2009.3.243
摘要
(
)
PDF全文
(
)
可视化
收藏
本文讨论矩阵多项式特征值定域问题. 首先对 Higham 和 Tisseur [Linear Algebra Appl., 358 (2003), 5-22]得到的结果给出较详细的比较. 然后利用分块矩阵谱半径的估计给出了获取特征值界的一种新办法.利用这种新办法, 不但可以简明地得出很多已有的界,且对椭圆及双曲矩阵多项式得出了特征值的新的界.
Select
插值细分曲线有理参数点的精确求值
刘秀平, 李宝军, 苏志勋, 郁博文
计算数学. 2009, 31(3): 253-260.
https://doi.org/10.12286/jssx.2009.3.253
摘要
(
)
PDF全文
(
)
可视化
收藏
本文提出了求值插值细分曲线上任意有理参数的算法. 通过构造与细分格式相关的矩阵,
m
进制分解给定有理数以及特征分解循环节对应算子乘积, 计算得到控制顶点权值,实现对称型静态均匀插值细分曲线的求值. 本文给出了四点细分和四点Ternary细分曲线的求值实例.算法可以推广到求值其他非多项式细分格式中.
Select
外推瀑布多网格法(EXCMG)---大规模求解椭圆问题的新算法
胡宏伶, 陈传淼, 谢资清
计算数学. 2009, 31(3): 261-274.
https://doi.org/10.12286/jssx.2009.3.261
摘要
(
)
PDF全文
(
)
可视化
收藏
基于有限元的渐近展开式,导出了新的外推公式,它们更精确地逼近密网上的有限元解(而不是微分方程的解).提出了新的外推瀑布型多网格法(EXCMG),采用新外推公式及其二次插值提供密网上的好初值.数值实验表明, 新方法有很高的精度和效率. 最后在PC机上求解了大规模二维椭圆问题.
Select
一种颗粒随机分布复合材料弹性位移场均匀化方法的理论分析
李友云, 崔俊芝, 郑健龙
计算数学. 2009, 31(3): 275-286.
https://doi.org/10.12286/jssx.2009.3.275
摘要
(
)
PDF全文
(
)
可视化
收藏
针对计算随机颗粒分布复合材料弹性位移/力学场时, 采用样本求力学性能期望值需要花费大量时间和内存的问题, 给出了一种计算颗粒随机分布复合材料弹性位移场的均匀化方法, 并且获得了均匀化位移场与期望位移场之间的一种理论误差. 首先由复合材料的特性定义了均匀化理论的随机场和概率空间, 然后结合单胞内颗粒随机分布复合材料的特性做了一些合理假设得到了在整个颗粒随机分布复合材料组成区域上的期望位移场与均匀化位移场之间的一种理论估计, 最后对此法所具有的优点、适应范围, 缺点、以及需要改进的地方做了进一步讨论.
Select
随机延迟微分方程的全隐式Euler方法
范振成
计算数学. 2009, 31(3): 287-298.
https://doi.org/10.12286/jssx.2009.3.287
摘要
(
)
PDF全文
(
)
可视化
收藏
研究随机延迟微分方程数值解具有重要的意义, 目前已有显式和半隐式两种数值方法,还没有全隐式的数值方法.本文构造了一种全隐式Euler方法, 在该方法中用一些截断的随机变量代替维纳过程增量Δ
W
n
, 接着证明了全隐式方法是1/2阶收敛的并通过数值实验验证了该方法的收敛性.最后, 用数值实验表明在某些情况下全隐式方法的稳定性比半隐式方法好一些.
Select
基于几何非协调分解的Lagrange乘子区域分解方法
陈星玎, 胡齐芽
计算数学. 2009, 31(3): 299-308.
https://doi.org/10.12286/jssx.2009.3.299
摘要
(
)
PDF全文
(
)
可视化
收藏
本文考虑将Lagrange乘子区域分解方法应用于几何非协调分解的情况来求解二阶椭圆问题.由于采用几何非协调区域分解, 每个局部乘子空间关联到多个界面, 我们按照一定的规则选取合适的乘子面来定义乘子空间. 利用局部正则化技巧, 可以消去内部变量, 得到关于Lagrange乘子的界面方程. 采用一种经济的预条件迭代方法求解界面方程, 且相关的预条件子是可扩展的.
Select
模拟化学反应系统的快速无偏
τ
-Leap算法
彭新俊, 王翼飞
计算数学. 2009, 31(3): 309-322.
https://doi.org/10.12286/jssx.2009.3.309
摘要
(
)
PDF全文
(
)
可视化
收藏
化学反应系统中的Leap算法可在获得较好精度的同时大幅提高模拟速度.最近提出的无偏Leap方法有效地克服了由Leap时间区间内的反应次数的近似均值与真实均值之间的偏差引起的Leap算法的误差的不足.本文讨论了一个基于物种相对改变估计真实均值的快速无偏
τ
-Leap算法,并将该算法推广到模拟时滞化学系统中.该快速算法具有易于编码、比前者更快等优点.当系统中的反应通道或物种的数目较大时, 该方法具有更明显的速度优势。
Select
热传导对流方程基于POD的差分格式
孙萍, 罗振东, 周艳杰
计算数学. 2009, 31(3): 323-334.
https://doi.org/10.12286/jssx.2009.3.323
摘要
(
)
PDF全文
(
)
可视化
收藏
本文用奇值分解和特征投影分解(proper orthogonal decomposition,简记为POD)研究热传导对流方程,导出其基于POD的一种简化的差分格式,并分析通常的差分格式的解和基于POD的简化的差分格式的解之间的误差估计.最后用方腔流数值例子验证本文的理论的正确性,从而验证了用基于POD的简化的差分格式解热传导对流方程的有效性.
在线期刊
当期目录
全年目录
过刊浏览
阅读排行
全文下载排行
被引用排行
E-mail Alert
访问统计
总访问量
今日访问
在线人数