中国科学院数学与系统科学研究院期刊网

2020年, 第42卷, 第2期 刊出日期:2020-05-15
  

  • 全选
    |
    青年评述
  • 戴小英
    计算数学. 2020, 42(2): 131-158. https://doi.org/10.12286/jssx.2020.2.131
    摘要 ( ) PDF全文 ( )   可视化   收藏
    第一原理电子结构计算已成为探索与研究物质机理、理解与预测材料性质的重要手段和工具.虽然第一原理电子结构计算取得了巨大的成功,但是如何利用高性能计算机又快又好地计算大规模体系,如何从数学角度理解电子结构模型的合理性与计算的可靠性和有效性,依然充满各种挑战.基于密度泛函理论的第一原理电子结构计算的核心数学模型为Kohn-Sham方程或相应的Kohn-Sham能量泛函极小问题.近年来,人们分别从非线性算子特征值问题的高效离散及Kohn-Sham能量泛函极小问题的最优化方法设计两个方面对电子结构计算的高效算法设计及分析展开了诸多研究.本文重点介绍我们小组在电子结构计算的方法与理论方面的一些进展,同时简单介绍该领域存在的困难与挑战.
  • 论文
  • 范俊民, 冷劲松, 李东伟
    计算数学. 2020, 42(2): 159-169. https://doi.org/10.12286/jssx.2020.2.159
    摘要 ( ) PDF全文 ( )   可视化   收藏
    框架理论常应用于信号重构.当编码系数在传输过程中发生等距丢失时,基于框架张量积的一些性质,我们可以利用框架张量积对信号进行编码从而降低数据丢失对重构信号的影响.本文由此提出了一种等距丢失模型,并在此模型下,研究了数据等距丢失下的最优对偶框架张量积,得出了对偶框架和正则对偶框架的张量积是最优对偶框架张量积的两个充分必要条件.最后数值实验也说明了:在等距丢失模型下,最优对偶框架张量积比一般对偶框架张量积的信号重构结果更优.
  • 钟巍, 田宙, 寿列枫
    计算数学. 2020, 42(2): 170-195. https://doi.org/10.12286/jssx.2020.2.170
    摘要 ( ) PDF全文 ( )   可视化   收藏
    量纲分析是科学研究,特别是工程应用中非常重要的一个理论分析工具.从E.Buckingham提出Π定理开始算起,量纲分析已有一百多年历史,其基本理论和方法已经非常成熟,在各个领域也取得了显著的成果并且仍然有着广泛的应用.然而,随着研究的深入,面对的问题越来越复杂和细致,人们越来越关注在传统量纲分析中忽略掉的一些所谓次要因素的影响,因此涉及的物理量变得越来越多,导致按传统的量纲分析方法处理时常常显得非常繁琐甚至困难.本文从线性代数的观点出发,将量纲分析转换为线性空间问题,通过矩阵运算,完成量纲分析的关键过程.给出了量纲分析对应的线性代数问题的基本定理,并基于这些定理建立了程序化的量纲分析算法,将原本复杂的量纲分析问题转化为借助计算机代数系统能够快速方便解决的矩阵运算问题.最后,结合笔者多年的工作经历,给出了上述方法在爆炸与冲击工程研究领域中的若干应用实例,详细表述了具体操作步骤,验证了算法的优越性.
  • 关宏波, 洪亚鹏
    计算数学. 2020, 42(2): 196-206. https://doi.org/10.12286/jssx.2020.2.196
    摘要 ( ) PDF全文 ( )   可视化   收藏
    本文针对抛物型界面问题,提出了一种线性三角形变网格有限元方法.其主要思路是针对空间变量采用有限元离散,对时间变量采用差分离散,但是不同时刻的有限元剖分网格可以不同.在不引入Ritz投影这一传统分析工具的情况下,得到了最优误差估计结果,使得证明过程更加简洁.给出的数值算例验证了理论分析的正确性.
  • 高岳林, 张博
    计算数学. 2020, 42(2): 207-222. https://doi.org/10.12286/jssx.2020.2.207
    摘要 ( ) PDF全文 ( )   可视化   收藏
    本文旨在针对线性比式和规划这一NP-Hard非线性规划问题提出新的全局优化算法.首先,通过引入p个辅助变量把原问题等价的转化为一个非线性规划问题,这个非线性规划问题的目标函数是乘积和的形式并给原问题增加了p个新的非线性约束,再通过构造凸凹包络的技巧对等价问题的目标函数和约束条件进行相应的线性放缩,构成等价问题的一个下界线性松弛规划问题,从而提出了一个求解原问题的分支定界算法,并证明了算法的收敛性.最后,通过数值结果比较表明所提出的算法是可行有效的.
  • 吴敏华, 李郴良
    计算数学. 2020, 42(2): 223-236. https://doi.org/10.12286/jssx.2020.2.223
    摘要 ( ) PDF全文 ( )   可视化   收藏
    针对系数矩阵为对称正定Toeplitz矩阵的线性互补问题,本文提出了一类预处理模系矩阵分裂迭代方法.先通过变量替换将线性互补问题转化为一类非线性方程组,然后选取Strang或T.Chan循环矩阵作为预优矩阵,利用共轭梯度法进行求解.我们分析了该方法的收敛性.数值实验表明,该方法是高效可行的.
  • 袭春晓, 孙建强, 孔嘉萌
    计算数学. 2020, 42(2): 237-245. https://doi.org/10.12286/jssx.2020.2.237
    摘要 ( ) PDF全文 ( )   可视化   收藏
    基于四阶平均向量场方法和拟谱方法构造了Dirac方程的高阶整体保能量格式,利用构造的高阶整体保能量格式数值模拟方程孤立波的演化行为.数值模拟结果表明构造的高阶整体保能量格式可以很好地模拟Dirac方程孤立波的演化行为,并且可以精确地保持方程的整体能量守恒特性.
  • 冯艳昭, 张澜
    计算数学. 2020, 42(2): 246-256. https://doi.org/10.12286/jssx.2020.2.246
    摘要 ( ) PDF全文 ( )   可视化   收藏
    约束矩阵方程求解是指在满足一定约束条件下求矩阵方程(组)的解.在子空间约束条件下,利用共轭梯度法,结合线性投影算子,得到矩阵方程ATXB+BTXTA=D的解,进一步得到其最佳逼近.最后用数值例子证实了算法的有效性.