马玉敏, 蔡邢菊
增广拉格朗日方法是求解带线性约束的凸优化问题的有效算法.线性化增广拉格朗日方法通过线性化增广拉格朗日函数的二次罚项并加上一个临近正则项,使得子问题容易求解,其中正则项系数的恰当选取对算法的收敛性和收敛速度至关重要.较大的系数可保证算法收敛性,但容易导致小步长.较小的系数允许迭代步长增大,但容易导致算法不收敛.本文考虑求解带线性等式或不等式约束的凸优化问题.我们利用自适应技术设计了一类不定线性化增广拉格朗日方法,即利用当前迭代点的信息自适应选取合适的正则项系数,在保证收敛性的前提下尽量使得子问题步长选择范围更大,从而提高算法收敛速度.我们从理论上证明了算法的全局收敛性,并利用数值实验说明了算法的有效性.