张勇
卷积位势广泛存在于科学和工程领域, 它的高效高精度计算往往是数值仿真的瓶颈.卷积位势是典型的非局部积分, 卷积核函数通常在原点或者无穷远处具有奇异性,密度函数是光滑速降函数并可能具有较强的各向异性. 无论是从卷积还是从傅里叶积分出发,我们首先将全空间截断到有界矩形区域并将其等距离散, 再应用傅里叶谱方法来高精度逼近密度函数.理想的求解器需要在保证高精度的同时, 尽可能提高计算效率, 并妥善处理各向异性密度函数的情形.本文详细回顾了目前流行的三类基于积分方程的高精度快速算法, 包括基于非均匀快速傅里叶变换的算法、基于高斯和的算法与核截断算法. 它们都能达到谱精度, 计算效率都类似于离散快速傅里叶变换(FFT), 并都能处理各向异性的密度函数. 这三类算法具有离散卷积结构;一旦生成了离散张量, 位势的计算将转化为两倍长度向量的傅里叶变换, 计算效率达到了近似最优,且与各向异性强度无关.最后我们介绍了误差估计的已有结果, 并用实例从精度、效率和各向异性等方面展示了算法能力.