本文对二阶椭圆问题构造了一个新的非常规Hermite型矩形单元并用各向异性插值基本定理证明了其各向异性特征,从而可用于任意的矩形剖分.同时还得到了与网格的正则性假设和拟一致假设无关的超逼近和超收敛性质以及外推.数值结果表明该单元确实是一个具有很好应用价值的单元且与理论分析是相吻合的.
本文在HS方法和DY方法的基础上,综合两者的优势,提出了一种求解无约束优化问题的新的混合共轭梯度法。在Wolfe线搜索下,不需给定下降条件,证明了算法的全局收敛性。数值试验表明,新算法较之HS方法和PR方法更加有效。