储德林
§1.问题描述极点配置是线性多变量控制理论中的一个重要的课题(参见[1]),问题的一般提法如下: 问题(PA):已知 A∈R~(n×m),B∈R~(n×m),秩 rankB=m, ={λ_1,λ_2,…,λ_n},其中每个λ_i是实数或者在 中成复共轭出现。求 F∈R~(m×n),使得σ(A+BF)= ,σ(·)表示(·)的谱. 对于已给的 A,B和 ,令 ={F∈R~(m×n):σ(A×BF)= }. 根据Wonham定理(参见[2]),如果矩阵对(A,B)可控,并且 如(PA)所述,则