设 F:DR~n→R~m,F=(f~1,…,f_m)~T,则非线性最小二乘问题可归结为求 g(x)=1/2 F(x)~TF(x)=1/2 sum from n=1 to m(1/n) f_i~2(x) (1)的极小点和极小值,即求x~*∈D使 g(x~*)=ming(x)/x∈D. (2) 本文应用解非线性方程组的连续极小化思想,将求解非线性最小二乘问题转化为解常微分方程的初值问题。用常微数值解法为求最小二乘问题提供了一种新的途径,如用Euler法和后退Euler法解初值问题,实际上就得到解最小二乘问题的最速下降法与