本文利用投影型插值和Ritz-Volterra投影研究一维变系数抛物方程的有限元方法,直接得到导数和位移的一个强校正格式.对于有限元解,分别对应力和位移获得整体的hk+2和hk+3阶的强结果.
设R∈Cn×n是满足R=RH=R-1≠±In的广义反射矩阵.若A∈Cn×n满足RAR=A,则称A为n阶广义中心对称矩阵,n阶广义中心对称矩阵的全体记为GCSCn×n.令X1,Z1∈Cn×k1,Y1,W1∈Cn×l1,S={A|‖AX1-Z1‖2+‖Y1HA-W1H‖2=min,A∈GCSCn×n},本文研究如下问题.问题Ⅰ.给定矩阵Z2,X2∈Cn×k2,Y2,W2∈Cn×l2,求A∈S,使得其中‖·‖是Frobenius范数.问题Ⅱ.给定矩阵A∈Cn×n,求A∈SE,使得其中SE是问题Ⅰ的解集合.本文给出了问题Ⅰ解集合SE的表达式,并导出了矩阵方程AX2=Z2,Y2HA=W2H有解A∈S的充分必要条件及其通解表达式,并给出了问题Ⅱ解的表达式以及求解问题Ⅱ的数值方法和数值例子.
1.引言与预备知识 为方便起见,我们仅考虑如下的模型问题: -△u=f,在Ω中,u|Ω=0, (1.1)其中Ω R~2是边平行坐标轴的矩形域。 W~(m,p)(Ω),W_0~(m,p)(Ω)(m为整数,1≤p≤∞)表示通常定义的Sobolev空间,||·||_(m,p,Ω),|·|_(m,p,Ω)为通常定义的范数和半范数,定义W~(m,2)(Ω):=H~m(Ω),W_0~(m,2)(Ω):=H_0~m(Ω)。
本文对二维发展型对流扩散方程的迎风有限元格式给出了显式后验误差估计,证明了真实误差被后验误差估计器上下界定;并通过误差估计器建立了相应的自适应算法,数值例子表明了方法的有效性.
给出一种带有参数的有理三次三角Hermite插值样条, 具有标准三次Hermite插值样条相似的性质. 利用参数的不同取值不但可以调控插值曲线的形状, 而且比标准三次Hermite插值样条更好地逼近被插曲线. 此外, 选择合适的控制点, 该种插值样条可以精确表示星形线和四叶玫瑰线等超越曲线.
Parareal 算法是一种非常有效的实时并行计算方法. 与传统的并行计算方法相比,该算法的显著特点是它的时间并行性 | 先将整个计算时间划分成若干个子区间,然后在每个子区间内同时进行计算. Parareal算法收敛速度快, 并行效率高, 且易于编程实现, 从 2001 年由 Lions,Maday 和 Turinici等人首次提出至今, 在短短的几年间得到了广泛的研究和应用. 最近, Parareal 算法在随机微分方程数值解中的应用也得到了一些学者的关注. 本文中, 我们研究 Parareal算法在随机微分方程数值解中的均方稳定性, 分析保持算法稳定的充分性条件. 通过分析, 我们得到了如下结论: a)Parareal 算法在有限时间区间内是超线性收敛的; b)在无限时间区间内, 该算法是线性收敛的. 最后, 通过数值试验, 我们验证了本文中的理论结果.