沈静, 杜育松
Karney于2016年提出了一种针对标准正态分布的精确采样算法.本文给出一种针对标准差为$\sqrt{1/(2\ln2)}$均值为$0$的正态分布的精确采样算法.这一种特殊的正态分布也被称为二元高斯分布,因为其相对概率密度函数可以由$2^{-x^2}$给出,这里$x$为任意实数.在实际中,针对二元高斯分布的这一精确采样算法无需浮点运算,可以看成是Karney精确采样技术的一种推广.分析了该采样算法产生一个二元高斯样本平均需要的区间$(0,1)$上的均匀偏差数.数值实验也表明了该采样算法的有效性.对于大于$1$但小于自然常数$e$的任意有理数$c$,将精确采样二元高斯分布的思想推广到了精确采样标准差为$\sqrt{1/(2\ln{c})}$均值为$0$的被称为“$c$元高斯分布”的一类正态分布上,并进行了类似的复杂性分析.